Unbibium (/[invalid input: 'icon']nˈbɪbiəm/), also referred to as eka-thorium or element 122, is the temporary name of a currently unknown chemical element in the periodic table that has the temporary symbol Ubb and the atomic number 122.

Unbibium, 122Ubb
Theoretical element
Unbibium
Pronunciation/ˌnbˈbəm/ (OON-by-BY-əm)
Alternative nameselement 122, eka-thorium
Unbibium in the periodic table
Hydrogen Helium
Lithium Beryllium Boron Carbon Nitrogen Oxygen Fluorine Neon
Sodium Magnesium Aluminium Silicon Phosphorus Sulfur Chlorine Argon
Potassium Calcium Scandium Titanium Vanadium Chromium Manganese Iron Cobalt Nickel Copper Zinc Gallium Germanium Arsenic Selenium Bromine Krypton
Rubidium Strontium Yttrium Zirconium Niobium Molybdenum Technetium Ruthenium Rhodium Palladium Silver Cadmium Indium Tin Antimony Tellurium Iodine Xenon
Caesium Barium Lanthanum Cerium Praseodymium Neodymium Promethium Samarium Europium Gadolinium Terbium Dysprosium Holmium Erbium Thulium Ytterbium Lutetium Hafnium Tantalum Tungsten Rhenium Osmium Iridium Platinum Gold Mercury (element) Thallium Lead Bismuth Polonium Astatine Radon
Francium Radium Actinium Thorium Protactinium Uranium Neptunium Plutonium Americium Curium Berkelium Californium Einsteinium Fermium Mendelevium Nobelium Lawrencium Rutherfordium Dubnium Seaborgium Bohrium Hassium Meitnerium Darmstadtium Roentgenium Copernicium Nihonium Flerovium Moscovium Livermorium Tennessine Oganesson
Ununennium Unbinilium
Unquadtrium Unquadquadium Unquadpentium Unquadhexium Unquadseptium Unquadoctium Unquadennium Unpentnilium Unpentunium Unpentbium Unpenttrium Unpentquadium Unpentpentium Unpenthexium Unpentseptium Unpentoctium Unpentennium Unhexnilium Unhexunium Unhexbium Unhextrium Unhexquadium Unhexpentium Unhexhexium Unhexseptium Unhexoctium Unhexennium Unseptnilium Unseptunium Unseptbium
Unbiunium Unbibium Unbitrium Unbiquadium Unbipentium Unbihexium Unbiseptium Unbioctium Unbiennium Untrinilium Untriunium Untribium Untritrium Untriquadium Untripentium Untrihexium Untriseptium Untrioctium Untriennium Unquadnilium Unquadunium Unquadbium


Ubb

unbiuniumunbibiumunbitrium
Atomic number (Z)122
Groupg-block groups (no number)
Periodperiod 8 (theoretical, extended table)
Block  g-block
Electron configurationpredictions vary, see text
Physical properties
Phase at STPunknown
Atomic properties
Oxidation statescommon: (none)
(+4)[1]
Ionization energies
  • 1st: 545 (predicted)[2] kJ/mol
  • 2nd: 1090 (predicted)[2] kJ/mol
  • 3rd: 1848 (predicted) kJ/mol
Other properties
CAS Number54576-73-7
History
NamingIUPAC systematic element name
| references

In 2008, it was claimed to have been discovered in natural thorium samples[3] but that claim has now been dismissed by recent repetitions of the experiment using more accurate techniques.

The first attempt to synthesize unbibium was performed in 1972 by Flerov et al. at JINR, using the hot fusion reaction:

 

No atoms were detected and a yield limit of 5 mb (5,000,000 pb)[dubious ] was measured. Current results (see flerovium) have shown that the sensitivity of this experiment was too low by at least 6 orders of magnitude.[അവലംബം ആവശ്യമാണ്]

In 2000, the Gesellschaft für Schwerionenforschung performed a very similar experiment with much higher sensitivity:

 

These results indicate that the synthesis of such heavier elements remains a significant challenge and further improvements of beam intensity and experimental efficiency is required. The sensitivity should be increased to 1 fb.[അവലംബം ആവശ്യമാണ്]

Compound nucleus fission

തിരുത്തുക

Several experiments have been performed between 2000-2004 at the Flerov laboratory of Nuclear Reactions studying the fission characteristics of the compound nucleus 306Ubb. Two nuclear reactions have been used, namely 248Cm + 58Fe and 242Pu + 64Ni. The results have revealed how nuclei such as this fission predominantly by expelling closed shell nuclei such as 132Sn (Z=50, N=82). It was also found that the yield for the fusion-fission pathway was similar between 48Ca and 58Fe projectiles, indicating a possible future use of 58Fe projectiles in superheavy element formation.[4]

Claimed discovery as a naturally occurring element

തിരുത്തുക

On April 24, 2008, a group led by Amnon Marinov at the Hebrew University of Jerusalem claimed to have found single atoms of unbibium in naturally occurring thorium deposits at an abundance of between 10−11 and 10−12, relative to thorium.[3] The claim of Marinov et al. was criticized by a part of the scientific community, and Marinov says he has submitted the article to the journals Nature and Nature Physics but both turned it down without sending it for peer review.[5]

A criticism of the technique, previously used in purportedly identifying lighter thorium isotopes by mass spectrometry,[6][7] was published in Physical Review C in 2008.[8] A rebuttal by the Marinov group was published in Physical Review C after the published comment.[9]

A repeat of the thorium-experiment using the superior method of Accelerator Mass Spectrometry (AMS) failed to confirm the results, despite a 100-fold better sensitivity.[10] This result throws considerable doubt on the results of the Marinov collaboration with regards to their claims of long-lived isotopes of thorium,[6][7] roentgenium[11] and unbibium.[3]

Target-projectile combinations leading to Z=122 compound nuclei

തിരുത്തുക

The table below contains various combinations of targets and projectiles which could be used to form compound nuclei with atomic number 122.[അവലംബം ആവശ്യമാണ്]

Target Projectile CN Attempt result
238U 70Zn 308Ubb Failure to date
238U 66Zn 304Ubb Failure to date
242Pu 64Ni 306Ubb Failure to date
248Cm 58Fe 306Ubb Failure to date

Electronic structure

തിരുത്തുക

It has been predicted by Ephraim Eliav et al. that unbibium will have the electron configuration [Uuo]8s27d18p1.[12]

Extrapolated chemical properties

തിരുത്തുക

If group reactivity is followed, unbibium should be a reactive metal, more reactive than cerium or thorium. Unbibium would most likely form the dioxide, UbbO2, and trihalides, such as UbbF3 and UbbCl3. The predicted oxidation states are III and IV (and perhaps II).[അവലംബം ആവശ്യമാണ്]

  1. Pyykkö, Pekka (2011). "A suggested periodic table up to Z ≤ 172, based on Dirac–Fock calculations on atoms and ions". Physical Chemistry Chemical Physics. 13 (1): 161–8. Bibcode:2011PCCP...13..161P. doi:10.1039/c0cp01575j. PMID 20967377.
  2. 2.0 2.1 Eliav, E.; Fritzsche, S.; Kaldor, U. (2015). "Electronic structure theory of the superheavy elements". Nuclear Physics A. 944 (December 2015): 518–550. doi:10.1016/j.nuclphysa.2015.06.017.
  3. 3.0 3.1 3.2 Marinov, A. (2008). "Evidence for a long-lived superheavy nucleus with atomic mass number A=292 and atomic number Z=~122 in natural Th". International Journal of Modern Physics E. 19: 131. arXiv:0804.3869. Bibcode:2010IJMPE..19..131M. doi:10.1142/S0218301310014662. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help)
  4. see Flerov lab annual reports 2000–2004 inclusive http://www1.jinr.ru/Reports/Reports_eng_arh.html
  5. Royal Society of Chemistry, "Heaviest element claim criticised", Chemical World.
  6. 6.0 6.1 A. Marinov; I. Rodushkin; Y. Kashiv; L. Halicz; I. Segal; A. Pape; R. V. Gentry; H. W. Miller; D. Kolb; R. Brandt (2007). "Existence of long-lived isomeric states in naturally-occurring neutron-deficient Th isotopes". Phys. Rev. C. 76 (2): 021303(R). arXiv:nucl-ex/0605008. Bibcode:2007PhRvC..76b1303M. doi:10.1103/PhysRevC.76.021303.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  7. 7.0 7.1 Marinov, A.; Rodushkin, I.; Kashiv, Y.; Halicz, L.; Segal, I.; Pape, A.; Gentry, R.; Miller, H.; Kolb, D. (2007). "Existence of long-lived isomeric states in naturally-occurring neutron-deficient Th isotopes". Physical Review C. 76 (2): 021303. arXiv:nucl-ex/0605008. Bibcode:2007PhRvC..76b1303M. doi:10.1103/PhysRevC.76.021303.
  8. R. C. Barber; J. R. De Laeter (2009). "Comment on "Existence of long-lived isomeric states in naturally-occurring neutron-deficient Th isotopes"". Phys. Rev. C. 79 (4): 049801. Bibcode:2009PhRvC..79d9801B. doi:10.1103/PhysRevC.79.049801.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  9. A. Marinov; I. Rodushkin; Y. Kashiv; L. Halicz; I. Segal; A. Pape; R. V. Gentry; H. W. Miller; D. Kolb; R. Brandt (2009). "Reply to "Comment on 'Existence of long-lived isomeric states in naturally-occurring neutron-deficient Th isotopes'"". Phys. Rev. C. 79 (4): 049802. Bibcode:2009PhRvC..79d9802M. doi:10.1103/PhysRevC.79.049802.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  10. J. Lachner; I. Dillmann; T. Faestermann; G. Korschinek; M. Poutivtsev; G. Rugel (2008). "Search for long-lived isomeric states in neutron-deficient thorium isotopes". Phys. Rev. C. 78 (6): 064313. Bibcode:2008PhRvC..78f4313L. doi:10.1103/PhysRevC.78.064313.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  11. Marinov, A.; Rodushkin, I.; Pape, A.; Kashiv, Y.; Kolb, D.; Brandt, R.; Gentry, R. V.; Miller, H. W.; Halicz, L. (2009). "Existence of Long-Lived Isotopes of a Superheavy Element in Natural Au" (PDF). International Journal of Modern Physics E. 18 (3). World Scientific Publishing Company: 621–629. arXiv:nucl-ex/0702051. Bibcode:2009IJMPE..18..621M. doi:10.1142/S021830130901280X. Retrieved February 12, 2012.
  12. Hoffman, Darleane C.; Lee, Diana M.; Pershina, Valeria (2006). "Transactinides and the future elements". In Morss; Edelstein, Norman M.; Fuger, Jean (eds.). The Chemistry of the Actinide and Transactinide Elements (3rd ed.). Dordrecht, The Netherlands: Springer Science+Business Media. p. 1659. ISBN 1-4020-3555-1.

ഫലകം:Compact extended periodic table

"https://ml.wikipedia.org/w/index.php?title=Unbibium&oldid=4338207" എന്ന താളിൽനിന്ന് ശേഖരിച്ചത്