ഇലാസ്റ്റോമർ

(Elastomer എന്ന താളിൽ നിന്നും തിരിച്ചുവിട്ടതു പ്രകാരം)

റബ്ബറിന്റെ ശാസ്ത്രീയ നാമമാണ് ഇലാസ്റ്റോമർ. വലിച്ചാൽ നീളുകയും പിടി വിട്ടാൽ ഉടൻ തന്നെ ചുരുങ്ങി പൂർവ്വസ്ഥിതി പ്രാപിക്കുകയും ചെയ്യുന്ന പ്രതിഭാസമാണ് ഇലാസ്തികത. ഈ സ്വഭാവഗുണം ഉളള പദാർത്ഥമാണ് ഇലാസ്റ്റോമർ. സ്വാഭാവിക റബ്ബറും മനുഷ്യ നിർമ്മിതമായ കൃത്രിമ റബ്ബറുകളും ഈ വർഗ്ഗത്തിൽ പെടുന്നു. ഇലാസ്റ്റിൻ എന്ന പ്രോട്ടീൻ ആണ് ജീവജാലങ്ങളുടെ ശരീരചർമത്തിന്റേയും, മാംസപേശികളുടേയും ഇലാസ്തികതക്ക് കാരണം.

ഇലാസ്റ്റോമറുകൾ പോളിമറുകൾ ആണ്. പക്ഷെ എല്ലാ പോളിമറുകളും ഇലാസ്റ്റോമറുകളാകുന്നില്ല. ദൈർഘ്യമേറിയ, എളുപ്പത്തിൽ വഴുതി മാറുന്ന ശൃംഖലകളും അവക്കിടയിൽ മിതമായ അളവിൽ കുരുക്കുകളും ഇലാസ്തികതക്ക് അത്യാവശ്യമാണ്. മറ്റൊരു പ്രധാന നിബന്ധന കൂടിയുണ്ട്. Tg (ഗ്ലാസ്സ് ട്രാൻസീഷൻ താപമാനം) പരിസര താപനിലക്ക് താഴെയായിരിക്കണം.[1]

വൾക്കനൈസേഷൻ

തിരുത്തുക

സ്വതേ ദുർബലവും ഒട്ടിപ്പിടിക്കുന്നതുമായ റബ്ബർ പശ ഗന്ധകവുമായളള രാസപ്രക്രിയയിലുടെ ദൃഢവും, ഇലാസ്തികതയുമുളള ഉപയോഗപ്രദമായ പദാർത്ഥമായി മാറ്റിയെടുക്കാമെന്ന് വളരെ യാദൃഛികമായാണ് ചാൾസ് ഗുഡിയർ കണ്ടുപിടിച്ചത്.[2] ഈ പ്രക്രിയയാണ് വൾക്കനൈസേഷൻ. 1844-ൽ ഗുഡിയർ ഇതിനുളള പേറ്റന്റ് എടുത്തു. വൾക്കനൈസേഷൻ പൊതുവെ മന്ദഗതിയിലാണ് നടക്കുക. ഇതിനെ ത്വരിതപ്പെടുത്താനായി ത്വരകങ്ങൾ ചേർക്കുന്നു.

വൾക്കനൈസേഷൻ ശൃംഖലകളെ കുരുക്കുകളിലൂടെ ബന്ധിപ്പിക്കുന്ന രാസപ്രക്രിയയാണെന്ന കാര്യം പിന്നീടാണ് വ്യക്തമായത്. കുരുക്കുകൾ വീഴുന്നതോടെ, ദുർബലവും ഒട്ടിപ്പിടിക്കുന്നതുമായ പദാർത്ഥം ഉപയോഗപ്രദമായ ഇലാസ്റ്റോമറായി മാറുന്നു. വൾക്കനൈസേഷൻ പ്രായോഗികമായതോടെ റബ്ബർ ഒരു സുപ്രധാനമായ വ്യാവസായികോത്പന്നമായി മാറി. ഉപയോഗപ്പട്ടികയിൽ അഗ്രിമസ്ഥാനത്ത് വണ്ടിച്ചക്രങ്ങൾക്കായുളള റബ്ബർ ടയറുകളും

മറ്റു ചേരുവകൾ

തിരുത്തുക

വൾക്കനൈസേഷനു പുറമെ, ഉപയോഗയോഗ്യമാക്കാനായി റബ്ബറിൽ മറ്റു പല രാസ വസ്തുക്കളും ചേർക്കേണ്ടതുണ്ട്. ഇതിലൊരു വിഭാഗമാണ് ഫില്ലേഴ്സ്(fillers). കാർബൺ ബ്ലാക്ക്, സിലിക്ക, ചോക്കു പൊടി, ഇവയെല്ലാം ഫില്ലേഴ്സായി ഉപയോഗുക്കപ്പെടുന്നു.

ഇലാസ്തികത: സൈദ്ധാതിക വശം

തിരുത്തുക

സ്വാഭാവിക റബ്ബറിന്റെ Tg -70oC ആണ്. അതായത് പരിസരതാപനില -70oC നു താഴെയെങ്കിൽ സ്വാഭാവിക റബ്ബർ ഉറച്ചുകട്ടിയായ പദാർത്ഥമായിരിക്കും. പരിസരതാപനില -70oC നു മുകളിലാണെങ്കിലോ ഇലാസ്തികതയുളള മൃദുവായ അവസ്ഥയിലും. Tg ഇത്രയും താണതായതിനാൽ നമുക്ക് ഇലാസ്തികതയുളള മൃദുവായ റബ്ബറുമായാണ് കൂടുതൽ പരിചയം. ഈ അവസ്ഥയിൽ റബ്ബറിലെ നീണ്ട ശൃംഖലകൾ ഒരടുക്കും ചിട്ടയുമില്ലാതെ കുഴഞ്ഞു മറിഞ്ഞാണ് കിടക്കുന്നത്. എന്നാൽ ബലം പ്രയോഗിച്ചു പിടിച്ചു വലിക്കുമ്പോൾ ശൃംഖലകൾ അണിനിരക്കുന്നു. പിടി വിട്ടാൽ പൂർവ്വസ്ഥിതി പ്രാപിക്കയും ചെയ്യുന്നു.

താപഗതിക തത്ത്വങ്ങളെ(Principles of Thermodynamics) ആസ്പദമാക്കി ഇലാസ്തികതയെ വ്യാഖ്യാനിക്കാം. താപഗതികത്തിലെ ഉദാത്തമായ ആശയമാണ് എൻട്രോപി. ഒരു കൂട്ടത്തിൻറെ (system) വൈവിധ്യത്തിൻറേയും അതുമൂലമുളവാകുന്ന സ്ഥിരതയുടേയും (stability) അളവുകോലാണ് എൻട്രോപി. വൈവിധ്യം കൂടുന്തോറും എൻട്രോപി വർദ്ധിക്കുന്നു; സ്ഥിരതയും കൂടുന്നു. ഒരടുക്കും ചിട്ടയുമില്ലാതെ കുഴഞ്ഞു മറിഞ്ഞു കിടക്കുന്ന അവസ്ഥയാണ് റബ്ബർ ശൃംഖലകളുടെ സ്ഥായിയായ സ്ഥിരതയുളള അവസ്ഥ. ഓരോ ശൃംഖലക്കും വിവിധഘടനകൾ( conformations)പ്രാപിക്കാനുളള സ്വാധ്യതകളുണ്ട്. എന്നാൽ ഇവയെ ബലം പ്രയോഗിച്ച് അണിനിരത്തുമ്പോൾ പൂർവ്വസ്ഥിതി പ്രാപിക്കാനുളള ത്വരയും കൂടുന്നു.

സ്വാഭാവിക റബ്ബർ ശൃംഖലാഘടന

തിരുത്തുക
Isoprene

.

ഐസോപ്രീൻ എന്ന് ഓർഗാനിക് തന്മാത്രയാണ് സ്വാഭാവിക റബ്ബറിൻറെ ഏകകം( Monomer). ഇത് കണ്ണികളായി ഇണക്കിച്ചേർ]]ക്കുമ്പോൾ അപൂരിത ബോണ്ടുകളുടെ എണ്ണം കുറയുന്നു. ശൃംഖലയിലെ അപൂരിത ബോണ്ടുകളാണ് പിന്നീട് വൾക്കനൈസേഷനു പ്രയോജനപ്പെടുന്നത്. cis trans എന്ന രണ്ടു രീതികളിൽ ശൃംഖലയുണ്ടാക്കാം.സ്വാഭാവിക റബ്ബറിൽ സിസ് രീതിയിലാണ് ഐസോപ്രീൻ കണ്ണികൾ ഇണക്കിയിട്ടുളളത്. റബ്ബറിൻറെ ഇലാസ്തികതക്ക് സിസ് വിധാനവും ഒരു മുഖ്യ പങ്കു വഹിക്കുന്നു. കാരണം ട്രാൻസ് രീതിയിൽ ഐസോപ്രീൻ കണ്ണികൾ ഇണക്കിയിട്ടുളള ഗുട്ടാപെർച്ച എന്ന മറ്റൊരു പ്രകൃതിദത്ത പദാർത്ഥത്തിന് ഇലാസ്തികതയില്ല.

കൃത്രിമ റബ്ബർ

തിരുത്തുക

ഒന്നും രണ്ടും ആഗോളയുദ്ധങ്ങളാണ് കൃത്രിമ റബ്ബർ കണ്ടുപിടിക്കപ്പെടാനുളള മുഖ്യ പ്രേരകങ്ങൾ. റബ്ബർ കൃഷി വലിയതോതിൽ നടന്നിരുന്ന ദക്ഷിണപൂർവ്വേഷ്യയുടെ സിംഹഭാഗവും ബ്രിട്ടന്റെ അധീനതയിലായിരുന്നതിനാൽ സംഖ്യകക്ഷികളുടെ നില സുരക്ഷിതമായിരുന്നു. എന്നാൽ ജർമനിയടക്കം അച്ചുതണ്ടു ശക്തികളുടെ കാര്യം നേരെ മറിച്ചും. ഇതിനകം റബ്ബറിന്റെ രാസഘടന ശാസ്ത്രജ്ഞർ അപഗ്രഥിച്ചെടുത്തിരുന്നു. ഇതിനോടൊപ്പം തന്നെ ഗന്ധകം ഉപയോഗിച്ചു മാത്രമല്ല മറ്റു പല രീതിയിലും വൾക്കനൈസേഷൻ നടത്താമെന്നും വ്യക്തമായി. കൃത്രിമ റബ്ബർ നിർമ്മാണത്തിനു വേണ്ട രൂപരേഖ തയ്യാറാക്കാൻ ഇവയെല്ലാം സഹായകമായി. [3] പൊതുവായും പ്രത്യേകമായുമുളള ആവശ്യങ്ങൾക്കനുസരിച്ച് പല തരം റബ്ബറുകൾ ഇന്ന് വിപണിയി ൽ ലഭ്യമാണ്.[4]. [5]

കൃത്രിമ റബ്ബർ ഇനങ്ങളിൽ ചിലവ

തിരുത്തുക

തെർമോപ്ലാസ്റ്റിക് ഇലാസ്റ്റോമർ

തിരുത്തുക

വൾക്കനൈസേഷനിലൂടെ ശൃംഖലകളെ ബന്ധിപ്പിക്കുന്ന കുരുക്കുകൾ ശാശ്വതമാണ് അസ്ഥിരപ്പെടുത്താനാവില്ല.(irreversible). അതിനാൽ വൾക്കനൈസേഷനു ശേഷം റബ്ബർ പുനരുപയോഗത്തിനുതകുന്നതല്ല. ഇതിനൊരു പരിഹാരമെന്നോണമാണ് തെർമോപ്ലാസ്റ്റിക് ഇലാസ്റ്റോമറുകൾ രംഗത്തെത്തിയത്. താപോർജ്ജം ഉപയോഗിച്ച് അസ്ഥിരപ്പെടുത്താവുന്ന താത്കാലിക കുരുക്കുകൾ ഏറെ പ്രയോജനകരമാവുന്നു.[6]

  1. James E Mark, ed. (2005). Science and Technology of Rubber. Academic Press. ISBN 978-0124647862.
  2. Natural Rubber Science and Technology. Oxford University Press. 1988. ISBN 978-0198552253. {{cite book}}: Unknown parameter |Editor= ignored (|editor= suggested) (help)
  3. Vernon Herbert (1985). Synthetic Rubber: A Project That Had to Succeed. Greenwood Press. ISBN 978-0313246340. {{cite book}}: Cite has empty unknown parameter: |1= (help); Unknown parameter |coauthor= ignored (|author= suggested) (help)
  4. Robert C. Klingender, ed. (2008). Handbook of Specialty Elastomers. CRC Press. ISBN 978-1574446760. {{cite book}}: Cite has empty unknown parameter: |1= (help)
  5. "Rubber Selection Guide". Archived from the original on 2008-12-26. Retrieved 2012-08-11.
  6. Geoffrey Holden (1999). Understanding Thermoplastic Elastomers. : Hanser Gardner Pubns. ISBN 978-1569902899. {{cite book}}: Cite has empty unknown parameter: |1= (help)
"https://ml.wikipedia.org/w/index.php?title=ഇലാസ്റ്റോമർ&oldid=4015455" എന്ന താളിൽനിന്ന് ശേഖരിച്ചത്