പൈതഗോറസ് സിദ്ധാന്തം

(പൈത്തഗോറസ് സിദ്ധാന്തം എന്ന താളിൽ നിന്നും തിരിച്ചുവിട്ടതു പ്രകാരം)

ഗണിതശാസ്ത്രത്തിലെ യൂക്ലിഡിയൻ ജ്യാമിതിയിൽ ഒരു മട്ടത്രികോണത്തിന്റെ മൂന്ന് വശങ്ങളുടെയും ബന്ധങ്ങൾ വിശദീകരിക്കാൻ ഉപയോഗിക്കുന്ന ഒരു സിദ്ധാന്തമാണ്‌ പൈത്തഗോറസ് സിദ്ധാന്തം. ഇത് കണ്ടുപിടിക്കുകയും തെളിയിക്കുകയും ചെയ്ത ഗ്രീക്ക് ഗണിതശാസ്ത്രജ്ഞനായിരുന്ന് പൈത്തഗോറസിന്റെ പേരിലാണ്‌ ഇത് അറിയപ്പെടുന്നത്. [1]

പൈത്തഗോറസ് സിദ്ധാന്തം: ഒരു മട്ടത്രികോണത്തിലെ കർണ്ണത്തിന്റെ വർഗ്ഗം അതിന്റെ പാദത്തിന്റെയും, ലംബത്തിന്റെയും വർഗ്ഗത്തിന്റെ തുകക്കു തുല്യമായിരിക്കും.

ഈ സിദ്ധാന്തം പറയുന്നതിങ്ങനെയാണ്‌:

ഒരു മട്ടത്രികോണത്തിലെ കർണ്ണത്തിന്റെ വർഗ്ഗം അതിന്റെ പാദത്തിന്റെയും, ലംബത്തിന്റെയും വർഗ്ഗത്തിന്റെ തുകക്കു തുല്യമായിരിക്കും

ഈ ചിത്രത്തിലെ ത്രികോണത്തിന്റെ കർണ്ണം c യും a യും b യും മറ്റു രണ്ടു വശങ്ങളും ആണ്‌. ഈ സിദ്ധാന്തം താഴെ പറയുന്ന സൂത്രവാക്യം പ്രകാരം വിശദീകരിക്കാം.

അല്ലെങ്കിൽ c:

ഇവിടെ കർണ്ണത്തിന്റെ നീളവും മറ്റേതെങ്കിലും വശത്തിന്റെ നീളവും തന്നിട്ടുണ്ടെങ്കിൽ മറ്റേ വശത്തിന്റെ നീളം കാണാനും ഈ സൂത്രവാക്യമുപയോഗിക്കാം

അല്ലെങ്കിൽ
  1. Heath, Vol I, p. 144.
"https://ml.wikipedia.org/w/index.php?title=പൈതഗോറസ്_സിദ്ധാന്തം&oldid=2158072" എന്ന താളിൽനിന്ന് ശേഖരിച്ചത്