ഡോപ്ലർ പ്രഭാവം
തരംഗസ്രോതസ്സും നിരീക്ഷകനും തമ്മിൽ ആപേക്ഷിക ചലനം ഉള്ളപ്പോൾ നിരീക്ഷിത തരംഗത്തിന്റെ ആവൃത്തിയിൽ (frequency) അനുഭവപ്പെടുന്ന മാറ്റമാണ് ഡോപ്ലർ പ്രഭാവം (Doppler effect). ശബ്ദതരംഗങ്ങളുടേയും പ്രകാശതരംഗങ്ങളുടേയും കാര്യത്തിൽ ഈ ഭൗതിക പ്രതിഭാസം നിരീക്ഷിക്കാം.
ആപേക്ഷിക ദൂരം കുറയുമ്പോൾ തരംഗത്തിന്റെ ആവൃത്തി കൂടുകയും (തരംഗദൈർഘ്യം കുറയുകയും) ദൂരം കൂടുമ്പോൾ ആവൃത്തി കുറയുകയും (തരംഗദൈർഘ്യം കൂടുകയും) ചെയ്യും എന്നതാണ് ഡോപ്ലർ തത്ത്വം. ശബ്ദത്തിന്റെ കാര്യത്തിൽ ഉച്ചതയിൽ (pitch) വരുന്ന ഏറ്റക്കുറച്ചിലായും പ്രകാശത്തിലാണെങ്കിൽ നിറംമാറ്റമായും ആണ് ഡോപ്ലർ പ്രഭാവം നമുക്കനുഭവപ്പെടുക.
1842-ൽ ക്രിസ്റ്റ്യൻ യൊഹാൻ ഡോപ്ലർ എന്ന ആസ്ട്രിയൻ ശാസ്ത്രജ്ഞനാണ് ഈ പ്രതിഭാസത്തിന് ശാസ്ത്രീയ വ്യാഖ്യാനം നൽകിയത്.
ഡോപ്ലർ പ്രഭാവം മൂന്ന് സന്ദർഭങ്ങളിലുണ്ടാകാം:
- സ്രോതസ്സ് സ്ഥിരാവസ്ഥയിലും നിരീക്ഷകൻ ചലനാവസ്ഥയിലും
- സ്രോതസ്സ് ചലനാവസ്ഥയിലും നിരീക്ഷകൻ സ്ഥിരാവസ്ഥയിലും
- സ്രോതസ്സും നിരീക്ഷകനും ചലനാവസ്ഥയിൽ.
ശബ്ദത്തിൽതിരുത്തുക
സ്രോതസ്സ് ചലനാവസ്ഥയിലും നിരീക്ഷകൻ സ്ഥിരാവസ്ഥയിലുംതിരുത്തുക
തീവണ്ടിപ്പാളത്തിനടുത്തു നിൽക്കുന്ന ഒരാൾക്ക് തീവണ്ടി അടുത്തുവരുന്തോറും അതിന്റെ വിസിലിന്റെ ഉച്ചത കൂടിവരുന്നതായും വണ്ടി കടന്നുപോയിക്കഴിയുമ്പോൾ ഉച്ചത പെട്ടെന്നു കുറയുന്നതായും അനുഭവപ്പെടും. ഡോപ്ലർ പ്രഭാവത്തിന് ഉത്തമോദാഹരണമാണിത്. വണ്ടി സമീപിക്കുന്തോറും വിസിലിൽ നിന്നു പുറപ്പെടുന്ന ശബ്ദതരംഗത്തിന്റെ സംപീഡനങ്ങളും (compressions) വിരളനങ്ങളും (rarefactions) തമ്മിൽ കൂടുതൽ അടുക്കുന്നു. അപ്പോൾ ശ്രോതാവ് ഓരോ സെക്കൻഡിലും സ്വീകരിക്കുന്ന ശബ്ദതരംഗങ്ങളുടെ എണ്ണം യഥാർഥത്തിൽ ഉത്സർജിക്കപ്പെടുന്നതിനേക്കാൾ കൂടുതലായിരിക്കും. അതായത് കേൾക്കുന്ന ശബ്ദത്തിന്റെ ആവൃത്തി വർധിക്കുന്നു; ഉച്ചത കൂടിയ ശബ്ദമായിട്ട് ഈ മാറ്റം അനുഭവപ്പെടുകയും ചെയ്യുന്നു. തരംഗദൈർഘ്യവും ആവൃത്തിയും പ്രതിലോമാനുപാതികമായതിനാൽ ഇവിടെ ശബ്ദതരംഗങ്ങളുടെ തരംഗദൈർഘ്യം (wavelength) കുറയുന്നു എന്നു പറയാം. വണ്ടി അകലുമ്പോൾ ശബ്ദതരംഗത്തിന്റെ വികാസം കൂടുന്നു. യൂണിറ്റ് സമയത്ത് (ഒരു സെക്കൻഡിൽ) ശ്രോതാവു സ്വീകരിക്കുന്ന ശബ്ദതരംഗങ്ങളുടെ എണ്ണം കുറയുന്നു. അതായത് ആവൃത്തി കുറഞ്ഞ് ഉച്ചതയും കുറയുന്നു.
സ്രോതസ്സിന്റെ ആവൃത്തി -ഉം അതിന്റെ ചലന പ്രവേഗം -ഉം ശബ്ദത്തിന്റെ വായുവിലുള്ള പ്രവേഗം -യും ആയാൽ, സ്രോതസ്സ് നിരീക്ഷകനിലേക്ക് അടുക്കുമ്പോൾ പുതിയ ആവൃത്തി ആയി കൂടുകയും, സ്രോതസ്സ് നിരീക്ഷകനിൽ നിന്ന് അകലുമ്പോൾ പുതിയ ആവൃത്തി ആയി കുറയുകയും ചെയ്യുന്നു.
ഉദാഹരണമായി 400 ഹെർട്സ് (Hz) ആവൃത്തിയിൽ വിസിൽ മുഴക്കിക്കൊണ്ട് ഒരു തീവണ്ടി മണിക്കൂറിൽ 96 കി.മീ. (27 മീ./സെ.) വേഗതയിൽ റെയിൽവേ സ്റ്റേഷനിൽ നില്ക്കുന്ന ഒരാളെ കടന്നു പോകുന്നു എന്നു സങ്കല്പിക്കുക. ശബ്ദപ്രവേഗം = 346 മീ./സെ. വണ്ടി അടുത്തേക്കു വരുമ്പോൾ ശ്രവിക്കുന്ന ആവൃത്തി
ഹെർട്സ്
ആയിരിക്കും. വണ്ടി കടന്നു പോയിക്കഴിയുമ്പോൾ
ഹെർട്സ്
ആയിരിക്കും.
ശബ്ദപ്രവേഗത്തേക്കാൾ കൂടിയ വേഗതയിലാണ് ശബ്ദസ്രോതസ്സിന്റെ ചലനമെങ്കിൽ തരംഗങ്ങൾ അതിവ്യാപനം (overlap) ചെയ്ത് V ആകൃതിയിൽ ഞെരുങ്ങിയ ഒരു തരംഗാഗ്രം (wavefront) രൂപീകൃതമാകും. ഇടതിങ്ങിയ ഈ വായു ഒരു 'ഷോക്ക് വേവ് കോൺ' ആയി രൂപംപൂണ്ട് 'സോണിക് ബൂം' ആയി നിരീക്ഷകനെ കടന്നുപോകും. സൂപ്പർസോണിക് വിമാനത്തിൽനിന്നു ശ്രവിക്കുന്ന ശബ്ദത്തിന് ഈ മാറ്റമാണു സംഭവിക്കുന്നത്.
സ്രോതസ്സ് സ്ഥിരാവസ്ഥയിലും നിരീക്ഷകൻ ചലനാവസ്ഥയിലുംതിരുത്തുക
എല്ലാ ദിശകളിലേക്കും ഒരുപോലെ ശബ്ദവീചികൾ അയയ്ക്കുന്ന ഒരു സ്ഥിരസ്രോതസ്സാണ് S എന്നു കരുതുക. ഉദാ. സൈറൺ. നിരീക്ഷകൻ A എന്ന സ്ഥലത്തു നിന്ന് സ്രോതസ്സിലേക്ക് അടുത്താൽ ഡോപ്ലർ പ്രഭാവം മൂലം ആവൃത്തി കൂടി ഉച്ചതയേറിയ ശബ്ദം കേൾക്കുന്നു. സ്രോതസ്സിനെ കടന്ന് B-യിലേക്ക് അകലുമ്പോൾ ആവൃത്തി കുറഞ്ഞ് ശബ്ദത്തിന്റെ ഉച്ചതയും കുറയുന്നു. ഇവിടെ
പുതിയ ആവൃത്തി
എന്ന സമീകരണം വഴി കണ്ടുപിടിക്കാം.
പ്രകാശത്തിൽതിരുത്തുക
ശബ്ദതരംഗങ്ങളിലെന്നപോലെ, വൈദ്യുതകാന്തതരംഗങ്ങളായ പ്രകാശത്തിലും ഡോപ്ലർ പ്രഭാവം സംഭവിക്കുന്നുണ്ട്. പ്രഭാവത്തിൽ സമാനസ്വഭാവമുണ്ടെങ്കിലും ഇവിടെ ഡോപ്ലർ നീക്കം (Doppler shift) നിർണയിക്കാൻ ഉപയോഗിക്കുന്ന സൂത്രവാക്യം (formula) വ്യത്യസ്തമാണ്.
പ്രകാശികത്തിൽ (Optics), സ്പെക്ട്രോസ്കോപ്പിക നിരീക്ഷണത്തിലൂടെ ഡോപ്ലർ പ്രഭാവം വ്യക്തമായി തെളിയുന്നു. വിദൂര ഗാലക്സികളിൽ നിന്നോ നക്ഷത്രങ്ങളിൽനിന്നോ വരുന്ന പ്രകാശരശ്മികളുടെ പഠനത്തിൽ നിന്ന് അവയുടെ ചലനസ്വഭാവത്തെക്കുറിച്ചു പഠിക്കാൻ കഴിയും. നിർദിഷ്ട തരംഗദൈർഘ്യമുള്ള ഒരേ സ്രോതസ്സുതന്നെ സ്ഥിരമായിരിക്കുമ്പോഴും ചലിച്ചുകൊണ്ടിരിക്കുമ്പോഴും സ്പെക്ട്രോമീറ്ററിൽക്കൂടി നാം വീക്ഷിക്കുന്നു എന്നു കരുതുക. ചലിക്കുന്ന സ്രോതസ്സിൽ സ്പെക്ട്രരേഖകൾക്ക് ചുവപ്പിന്റെ അറ്റത്തേക്കോ വയലറ്റിന്റെ അറ്റത്തേക്കോ വിസ്ഥാപനം (displacement) ഉള്ളതായിക്കാണാം. ഈ നീക്കത്തെയാണ് ഡോപ്ലർ നീക്കം എന്നു വിവക്ഷിക്കുന്നത്.
ഉദാഹരണമായി നിരീക്ഷകൻ ഒരിടത്തു നിന്നുകൊണ്ട് അടുത്തുകൊണ്ടിരിക്കുന്ന ഒരു പ്രകാശ സ്രോതസ്സിനെ വീക്ഷിക്കുന്നു എന്നു കരുതുക. അതിന്റെ തരംഗദൈർഘ്യവും പ്രവേഗവും പ്രകാശവേഗവും ആയാൽ
നിരീക്ഷിത തരംഗദൈർഘ്യം ആയിരിക്കും.
അതായത് നിരീക്ഷിത തരംഗദൈർഘ്യം കുറയുകയും (ആവൃത്തി കൂടുകയും) സ്പെക്ട്രരേഖ വയലറ്റുഭാഗത്തേക്കു നീങ്ങുകയും ചെയ്യുന്നു. മറിച്ച്, സ്രോതസ്സ് നിരീക്ഷകനിൽനിന്ന് അകന്നുപോവുകയാണെങ്കിൽ നിരീക്ഷിത തരംഗദൈർഘ്യം വർധിച്ച് (ആവൃത്തി കുറഞ്ഞ്) സ്പെക്ട്രരേഖ ചുവപ്പുഭാഗത്തേക്കു നീങ്ങും. അപ്പോൾ പുതിയ തരംഗദൈർഘ്യം
എന്നതായിരിക്കും.
നിരീക്ഷണങ്ങളിൽനിന്ന് മിക്ക ഗാലക്സികളുടേയും നെബുലകളുടേയും നക്ഷത്രങ്ങളുടേയും ദൃശ്യസ്പെക്ട്രം ചുവപ്പുഭാഗത്തേക്കു നീങ്ങുന്നതായാണു കാണുന്നത്. ഇതിനെ ചുവപ്പു നീക്കം (red shift) എന്നു വിശേഷിപ്പിക്കുന്നു. അനേകം പ്രകാശവർഷം അകലെയുള്ള ഗാലക്സികളുടെ ഇത്തരം ചുവപ്പു നീക്കം ഗാലക്സികൾ തമ്മിൽ അകലുകയാണ് എന്നു തെളിയിക്കുന്നു. ഇത് 'പ്രപഞ്ചം വികസിച്ചുകൊണ്ടിരിക്കുന്നു' (Expanding Universe) എന്ന ആശയത്തെ പിന്താങ്ങുന്നു.
ഡോപ്ലർ പ്രഭാവത്തിന് ശബ്ദത്തിലും പ്രകാശത്തിലും ഉള്ള വ്യത്യാസങ്ങൾതിരുത്തുക
അടിസ്ഥാനപരമായി മൂന്നു വ്യത്യാസങ്ങളാണ് ഇവ തമ്മിലുള്ളത്.
- പ്രകാശികത്തിൽ, സ്രോതസ്സാണോ നിരീക്ഷകനാണോ ആപേക്ഷിക ചലനത്തിൽ എന്നുള്ളതിനെ ആശ്രയിച്ചല്ല തരംഗത്തിന്റെ ആവൃത്തിമാറ്റം. ശബ്ദത്തിൽ, ഈ രണ്ടു വ്യത്യസ്ത സാഹചര്യങ്ങളിലും ആവൃത്തിമാറ്റം വ്യത്യസ്തമാണ്.
- സ്രോതസ്സിനേയും നിരീക്ഷകനേയും തമ്മിൽ ബന്ധിപ്പിക്കുന്ന നേർരേഖയ്ക്ക് 90°-യിൽ (at right angle) സ്രോതസ്സോ നിരീക്ഷകനോ ചലിക്കുന്നു എന്നു കരുതുക. ഇവിടെ ശബ്ദത്തിൽ ഡോപ്ലർ പ്രഭാവം (ആവൃത്തി മാറ്റം)ഉണ്ടാകുന്നില്ല. എന്നാൽ പ്രകാശത്തിൽ ഡോപ്ലർ പ്രഭാവം സംഭവിക്കുന്നു.
- തരംഗം സഞ്ചരിക്കുന്ന മാധ്യമവും ചലനാവസ്ഥയിലാണ് എങ്കിൽ നിരീക്ഷിത പ്രകാശത്തിൽ ആവൃത്തിയെ അത് ബാധിക്കുന്നില്ല. എന്നാൽ ശബ്ദത്തിലെ നിരീക്ഷിത ആവൃത്തിയെ അതു ബാധിക്കുന്നു.
ഡോപ്ലർ പ്രഭാവം കൊണ്ടുള്ള പ്രായോഗിക പ്രയോജനങ്ങൾതിരുത്തുക
തരംഗസ്പെക്ട്രത്തിലെ ഫ്രോൺഹോഫർ രേഖകളുടെ വിസ്ഥാപനം അളന്ന്, ഭൂമിയെ അപേക്ഷിച്ച് വിവിധ നക്ഷത്രങ്ങൾ, ഗ്രഹങ്ങൾ, ഗാലക്സികൾ, നെബുലകൾ എന്നിവയുടെ പ്രയാണസ്വഭാവം (അകലുന്നോ അടുക്കുന്നോ എന്ന്), ചലന പ്രവേഗം എന്നിവ നിർണയിക്കാം. സ്രോതസ്സ് ഭ്രമണം ചെയ്യുന്നെങ്കിൽ അതിന്റെ ദിശ, കറക്കത്തിന്റെ വേഗത എന്നിവയും മനസ്സിലാക്കാം.
ഒരേ സ്രോതസ്സിൽ നിന്നുള്ള പ്രകാശ സ്പെക്ട്രം വളരെ നാൾ ഛായാഗ്രഹണം ചെയ്താൽ ഒരു മാനചിത്രം (map) ഉണ്ടാക്കാൻ കഴിയും. ഓരോ നിശ്ചിത രേഖയ്ക്കും വരുന്ന ഡോപ്ലർ നീക്കം ആധാരമാക്കി തയ്യാറാക്കുന്ന ഈ മാനചിത്രത്തിൽ നിന്നും ചലിക്കുന്ന സ്രോതസ്സിന്റെ ഏതു സമയത്തുമുള്ള പഥവും അവസ്ഥയും അടയാളപ്പെടുത്താം. സൗരസ്പെക്ട്ര ഛായാഗ്രഹണത്തിൽ സൂര്യന്റെ പശ്ചിമാംഗത്തിനു സംഗതമായ ഫോൺഹോഫർ രേഖകൾ പൂർവാംഗത്തിലുള്ളവയെ അപേക്ഷിച്ച് വയലറ്റ് നിറത്തിലേക്കു നീങ്ങിയതായി കാണാം. സൂര്യൻ പടിഞ്ഞാറു നിന്ന് കിഴക്കോട്ട് ഭ്രമണം ചെയ്യുന്നുവെന്ന് ഇതു തെളിയിക്കുന്നു.
ശനിഗ്രഹത്തിന്റെ വലയങ്ങളുടെ ഡോപ്ലർ പ്രഭാവം നിരീക്ഷിക്കുമ്പോൾ അതിന്റെ ഉൾവലയം ബാഹ്യവലയത്തേക്കാൾ വേഗത്തിൽ കറങ്ങുന്നതായി കാണുന്നു. ഇത് ശനിയുടെ വലയങ്ങൾ ഘനാകാരമല്ല; അസന്തതമായ (discontinuous) ഒരു കൂട്ടം ഉപഗ്രഹങ്ങൾ അടങ്ങിയതാണ് എന്നു കാണിക്കുന്നു.
ദൂരദർശിനിയിൽക്കൂടി വീക്ഷിക്കുമ്പോൾ വേർതിരിഞ്ഞു കാണാൻ കഴിയാതെ ഒരു പ്രകാശബിന്ദുവായി മാത്രം കാണപ്പെടുന്ന യുഗ്മതാരകൾ അഥവാ ഇരട്ട നക്ഷത്രങ്ങൾ (double stars) ഉണ്ട്. ഡോപ്ലർ തത്ത്വം അനുസരിച്ച് ഇവ ഇരട്ടയാണെന്നു കണ്ടുപിടിക്കാനാകും. ഇത്തരം നക്ഷത്രങ്ങളുടെ പ്രകാശരേഖകൾ കാലികമായി ഇരട്ടയായും ഒറ്റയായും പ്രത്യക്ഷപ്പെടും.
A,B എന്നിവ യുഗ്മ നക്ഷത്രങ്ങളുടെ ആദ്യസ്ഥാനങ്ങളാണെന്നു കരുതുക. A സൂര്യനിൽനിന്ന് അകന്നുപോകുമ്പോൾ B സൂര്യനോട് അടുക്കുകയായിരിക്കും. അവ യഥാക്രമം A1,B1 എന്നീ സ്ഥാനങ്ങളിലെത്തുമ്പോൾ ഒറ്റവര മാത്രമായിരിക്കും സ്പെക്ട്രോ മീറ്ററിൽ പ്രത്യക്ഷപ്പെടുന്നത്.
ഡോപ്ലർ തത്ത്വപ്രകാരം എയർക്രാഫ്റ്റുകൾ, മിസ്സൈലുകൾ, ഉപഗ്രഹങ്ങൾ എന്നിവയുടെ സ്ഥാനനിർണയനം നടത്താൻ കഴിയും.
ഇവിടെ ഉച്ചാവൃത്തിയുള്ള റേഡിയോ തരംഗങ്ങൾ അയച്ച് ടാർജറ്റിൽ തട്ടി പ്രതിഫലിക്കുന്ന സിഗ്നലുകളുടെ ഡോപ്ലർ നീക്കം നിരീക്ഷിക്കുന്നു. ടാർജറ്റ് അടുക്കുന്നോ അകലുന്നോ എന്നും അതിന്റെ വേഗത എത്രയെന്നും ഇതിൽനിന്നു മനസ്സിലാക്കാം. ഡോപ്ളർ തത്ത്വത്തെ അടിസ്ഥാനപ്പെടുത്തിയാണ് ഡോപ്ലർ റഡാർ സംവിധാനം ചെയ്തിരിക്കുന്നത്. ചിത്രത്തിൽ നിന്നും, അകന്നുകൊണ്ടിരിക്കുന്ന വിമാനത്തിൽ തട്ടി പ്രതിഫലിക്കുന്ന സിഗ്നലുകളുടെ തരംഗദൈർഘ്യം കൂടുന്നു എന്നും അടുക്കുന്ന വിമാനത്തിൽ തട്ടി പ്രതിഫലിക്കുന്ന സിഗ്നലുകളുടെ തരംഗദൈർഘ്യം കുറയുന്നു എന്നും കാണാം. അന്തർവാഹിനി (submarine) പോലെ സമുദ്രാന്തർഭാഗത്തുള്ള വസ്തുക്കളുടേയും കൃത്യമായ സ്ഥാനം ഇതുപോലെ നിർണയിക്കാനാകും.
Wikimedia Commons has media related to Doppler effect. |
കടപ്പാട്: കേരള സർക്കാർ ഗ്നൂ സ്വതന്ത്ര പ്രസിദ്ധീകരണാനുമതി പ്രകാരം ഓൺലൈനിൽ പ്രസിദ്ധീകരിച്ച മലയാളം സർവ്വവിജ്ഞാനകോശത്തിലെ ഡോപ്ളർ_പ്രഭാവം എന്ന ലേഖനത്തിന്റെ ഉള്ളടക്കം ഈ ലേഖനത്തിൽ ഉപയോഗിക്കുന്നുണ്ട്. വിക്കിപീഡിയയിലേക്ക് പകർത്തിയതിന് ശേഷം പ്രസ്തുത ഉള്ളടക്കത്തിന് സാരമായ മാറ്റങ്ങൾ വന്നിട്ടുണ്ടാകാം. |