ഒരു ഗണിതശാസ്ത്രശാഖയാണ് അഫൈൻ ജ്യാമിതി. നീളം, കോണം (angle) എന്നിവയെ സാധാരണ അർഥത്തിൽ അളക്കുന്ന യുക്ലീഡിയൻ സമ്പ്രദായത്തിലുള്ള അളവുകളെ ഇതിൽ ഒഴിവാക്കുന്നു. പ്രക്ഷേപീയ ജ്യാമിതി (projective Geometry)യിൽ നിന്നു[1] വ്യത്യസ്തമായി സമാന്തരത (parallelism)[2] യുടെ ഒരു നിർവചനത്തെ ആധാരമാക്കിയാണ് ഈ ശാഖ കെട്ടിപ്പടുത്തിട്ടുള്ളത്.

In affine geometry, one uses Playfair's axiom to find the line through C1 and parallel to B1B2, and to find the line through B2 and parallel to B1C1: their intersection C2 is the result of the indicated translation.

അടിസ്ഥനരേഖ

തിരുത്തുക

ഏതെങ്കിലും ഒരു പ്രത്യേകരേഖയെ (നേർരേഖ ആകണമെന്നില്ല) ആസ്പദമാക്കിയായിരിക്കും ഇതിൽ സമാന്തരത നിർവചിക്കപ്പെടുന്നത്; പ്രക്ഷേപീയ ജ്യാമിതിയിൽ അത്തരം ഒരു സ്ഥിരരേഖ അഥവാ അടിസ്ഥാനരേഖ ഉണ്ടായിരിക്കുകയില്ല. ജ്യാമിതിയിലെ അനന്തതാരേഖയെ (line at infinity)[3] തന്നെ അടിസ്ഥാനരേഖയായി ഇതിൽ സ്വീകരിക്കാവുന്നതാണ്. ഈ രേഖയിൽ മുട്ടുന്ന രണ്ടു രേഖകൾ സമാന്തരമായിരിക്കാമെന്നതുകൊണ്ട് അനന്തതാരേഖയ്ക്ക് അഫൈൻ ജ്യാമിതിയിൽ പ്രാധാന്യമുണ്ട്. സമാന്തരതയുടെ ഒരു നിർവചനം ഇതിൽനിന്നുണ്ടാകുന്നു. ആ നിർവചനത്തെ അടിസ്ഥാനമാക്കി ഒരു അഫൈൻ ജ്യാമിതി സൃഷ്ടിക്കാൻ കഴിയും. ഏതെങ്കിലും ഒരു രേഖയെ പ്രത്യേകമായി സ്വീകരിക്കുവാൻ കഴിയുമെങ്കിൽ ആ അടിസ്ഥാനത്തിൽ ഒരു സമാന്തരതയും അതിൽനിന്ന് ഒരു അഫൈൻ ജ്യാമിതിയും രൂപപ്പെടുത്താവുന്നതാണ്. പ്രക്ഷേപീയജ്യാമിതിയിൽ ദീർഘവൃത്തവും പരവളയ (parabola)വും ബഹിർവളയ(hyperbola)വും തമ്മിൽ തത്ത്വത്തിൽ വ്യത്യാസമില്ല; എന്നാൽ അഫൈൻ ജ്യാമിതിയിൽ ഇവ വ്യത്യസ്തമാണ്. മിതീയ ജ്യാമിതി(Metrical Geometry)യിൽ[4] മാത്രമേ വൃത്തവും ദീർഘവൃത്തവും തമ്മിൽ വ്യത്യാസമുള്ളു. യുക്ലീഡിയൻ തത്ത്വങ്ങൾ ഉപയോഗിച്ച് നീളം, കോണം എന്നിവ അളക്കുന്ന സമ്പ്രദായം സമതല യുക്ളീഡിയൻ ജ്യാമിതി (Plane Euclidean Geometry)യിൽ[5] നിന്നു മാറ്റിയാൽ അവശേഷിക്കുന്നത് ഒരു അഫൈൻ ജ്യാമിതി ആയിരിക്കും.

രൂപാന്തരണങ്ങൾ

തിരുത്തുക

സമാന്തരരേഖകളെ സമാന്തരരേഖകളായിതന്നെ നിലനിർത്തുന്നതും അതുപോലെ വസ്തുതകളെ നിശ്ചരം (invariant) ആയി നിലനിർത്തുന്നതും ആയ രൂപാന്തരണങ്ങൾ (transformations) ഉണ്ട്. ഉദാ.

x1 = ax + by + c

y1 = dx + ey + f

(ae-bd) എന്നതു പൂജ്യം ആകാത്തവിധം ഈ രൂപാന്തരണങ്ങൾ ഉപയോഗിച്ചാൽ x, y എന്നീ നിർദ്ദേശാങ്കങ്ങൾ x1, y1 എന്നിവയായി രൂപാന്തരപ്പെടുന്നു. ഇതുകൊണ്ടു സമാന്തര രേഖകൾ സമാന്തരമായിത്തന്നെ വർത്തിക്കും. ഇത്തരം നിശ്ചര രൂപാന്തരണ (invariant transformations)ങ്ങളെ അഫൈൻ അഥവാ സജാതീയം എന്നു പറയുന്നു. ഇത്തരം രൂപാന്തരണങ്ങൾ എല്ലാംകൂടി ആധുനിക ബീജഗണിതം അനുസരിച്ച് ഒരു ഗ്രൂപ്പ് ആയിത്തീരുന്നു. ഗ്രൂപ്പ് സിദ്ധാന്ത(Group Theory )ത്തിന്റെ[6] അടിസ്ഥാനത്തിൽ നിശ്ചരമായിരിക്കുന്ന വസ്തുതകളുടെ ഗുണധർമങ്ങൾ വിശദമാക്കുന്ന നിർവചനങ്ങളും തത്ത്വങ്ങളും ചേർന്നാൽ ഒരു അഫൈൻ ജ്യാമിതി ആയി.

(ae-bd) എന്നതിന്റെ മൂല്യം ഒന്ന് ആണെങ്കിൽ മേല്പറഞ്ഞ ഉദാഹരണത്തിലെ രൂപാന്തരണങ്ങൾ ഉപയോഗിച്ചാൽ

(x1, y1), (x2, y2), (x3, y3)

എന്നീ മൂന്നു ബിന്ദുക്കളും ഒരേ നേർരേഖയിൽ അല്ലാതിരിക്കുമ്പോൾ

x1 (y2 - y3) + x2 (y3 - y1) + x3 (y1 - y2)

എന്നതു നിശ്ചരമായിരിക്കും. ഇത് ഉൾക്കൊള്ളുന്ന രൂപാന്തരണങ്ങളെ സമജാതീയം (equi-affine)[7] എന്നു പറയുന്നു. സമജാതീയ രൂപാന്തരണത്തെ ആധാരമാക്കി നിശ്ചരമായിരിക്കുന്ന സമതലവക്രങ്ങ (plane curves)ളുടെ ഗുണധർമങ്ങൾ പഠനവിധേയമായിട്ടുണ്ട്.[8]

ഇക്കാര്യങ്ങളെല്ലാം ഉയർന്ന മാനങ്ങളിലുള്ള പ്രതലങ്ങളെ അടിസ്ഥാനമാക്കി സാമാന്യവത്കരിച്ചിരിക്കുന്നു. ത്രിമാന പദ്ധതിയിലെ യൂക്ലീഡിയൻ വക്രങ്ങൾക്കും പ്രതലങ്ങൾക്കും എന്നപോലെ ഒരു സിദ്ധാന്തം ഇവയെ സംബന്ധിച്ച് അഫൈൻ ജ്യാമിതിയിലുണ്ട്. n-മാന പദ്ധതിയിൽ n സ്വതന്ത്രചരങ്ങളുടെ ഒരു സമുച്ചയംകൊണ്ട് n-മാന പദ്ധതിയിലെ ഒരു ബിന്ദു പ്രതിനിധാനം ചെയ്യപ്പെടാവുന്നതാണ്. ഇത്തരം ബിന്ദുക്കൾ ഉൾക്കൊള്ളുന്ന പ്രതലത്തിൽ സമാന്തരത എന്നതു കേവലാർഥത്തിൽ പറയുന്നതു ശരിയല്ല ഇതിൽ സമാന്തരതയെ ആപേക്ഷികമായിട്ടേ നിർവചിക്കാൻ കഴിയൂ. സമാന്തരതയ്ക്ക് ഒരു നിർവചനം നൽകുന്നതുകൊണ്ടു മാത്രമേ ഇതു സാധ്യമാകൂ. യൂക്ലീഡിയൻ ജ്യാമിതിയിൽ കേവലാർഥത്തിലാണ് സമാന്തരത നിർവചിക്കപ്പെടുന്നത്.

പ്രതലങ്ങൾക്ക് ഇത്തരം അഫൈൻ നിയമങ്ങൾ ഉണ്ടെങ്കിൽ ആ പ്രതലങ്ങളെ സജാതീയബന്ധിതം (affinely connected) എന്നു പറയുന്നു. റീമാനിയൻ ജ്യാമിതി (Riemannian Geometry)യുടെ[9] മാതൃകയിൽ സജാതീയ ബന്ധിതമായ പ്രതലങ്ങളുടെ ഒരു സിദ്ധാന്തം തന്നെ കാർടൺ, എഡിങ്ടൺ, ഐൻ‌സ്റ്റൈൻ‍, വെബ്ലൻ, വീയിൽ എന്നിവർ രൂപം നൽകിയിട്ടുണ്ട്. നോ:(ae-bd) എന്നതിന്റെ മൂല്യം ഒന്ന് ആണെങ്കിൽ മേല്പറഞ്ഞ ഉദാഹരണത്തിലെ രൂപാന്തരണങ്ങൾ ഉപയോഗിച്ചാൽ

(x1, y1), (x2, y2), (x3, y3)

എന്നീ മൂന്നു ബിന്ദുക്കളും ഒരേ നേർരേഖയിൽ അല്ലാതിരിക്കുമ്പോൾ

x1 (y2 - y3) + x2 (y3 - y1) + x3 (y1 - y2)

എന്നതു നിശ്ചരമായിരിക്കും. ഇത് ഉൾക്കൊള്ളുന്ന രൂപാന്തരണങ്ങളെ സമജാതീയം (equi-affine) എന്നു പറയുന്നു. സമജാതീയ രൂപാന്തരണത്തെ ആധാരമാക്കി നിശ്ചരമായിരിക്കുന്ന സമതലവക്രങ്ങ (plane curves)ളുടെ ഗുണധർമങ്ങൾ പഠനവിധേയമായിട്ടുണ്ട്.

ഇക്കാര്യങ്ങളെല്ലാം ഉയർന്ന മാനങ്ങളിലുള്ള പ്രതലങ്ങളെ അടിസ്ഥാനമാക്കി സാമാന്യവത്കരിച്ചിരിക്കുന്നു. ത്രിമാന പദ്ധതിയിലെ യൂക്ളിഡിയൻ വക്രങ്ങൾക്കും പ്രതലങ്ങൾക്കും എന്നപോലെ ഒരു സിദ്ധാന്തം ഇവയെ സംബന്ധിച്ച് അഫൈൻ ജ്യാമിതിയിലുണ്ട്. n-മാന പദ്ധതിയിൽ n സ്വതന്ത്രചരങ്ങളുടെ ഒരു സമുച്ചയംകൊണ്ട് n-മാന പദ്ധതിയിലെ ഒരു ബിന്ദു പ്രതിനിധാനം ചെയ്യപ്പെടാവുന്നതാണ്. ഇത്തരം ബിന്ദുക്കൾ ഉൾക്കൊള്ളുന്ന പ്രതലത്തിൽ സമാന്തരത എന്നതു കേവലാർഥത്തിൽ പറയുന്നതു ശരിയല്ല ഇതിൽ സമാന്തരതയെ ആപേക്ഷികമായിട്ടേ നിർവചിക്കാൻ കഴിയൂ. സമാന്തരതയ്ക്ക് ഒരു നിർവചനം നല്കുന്നതുകൊണ്ടു മാത്രമേ ഇതു സാധ്യമാകൂ. യൂക്ളീഡിയൻ ജ്യാമിതിയിൽ കേവലാർഥത്തിലാണ് സമാന്തരത നിർവചിക്കപ്പെടുന്നത്.

പ്രതലങ്ങൾക്ക് ഇത്തരം അഫൈൻ നിയമങ്ങൾ ഉണ്ടെങ്കിൽ ആ പ്രതലങ്ങളെ സജാതീയബന്ധിതം (affinely connected) എന്നു പറയുന്നു. റീമാനിയൻ ജ്യാമിതി (Riemannian Geometry)യുടെ മാതൃകയിൽ സജാതീയ ബന്ധിതമായ പ്രതലങ്ങളുടെ ഒരു സിദ്ധാന്തം തന്നെ കാർടൺ, എഡിങ്ടൺ, ഐൻസ്റ്റൈൻ, വെബ്ലൻ, വീയിൽ എന്നിവർ രൂപം നല്കിയിട്ടുണ്ട്.

ഇതുംകൂടികാണുക

തിരുത്തുക
  1. http://www.geometer.org/mathcircles/projective.pdf
  2. http://free-english-study.com/grammar/parallelism.html
  3. "ആർക്കൈവ് പകർപ്പ്". Archived from the original on 2011-11-15. Retrieved 2011-10-28.
  4. "ആർക്കൈവ് പകർപ്പ്" (PDF). Archived from the original (PDF) on 2013-05-23. Retrieved 2011-10-28.
  5. "ആർക്കൈവ് പകർപ്പ്". Archived from the original on 2011-08-13. Retrieved 2011-10-28.
  6. http://www.jmilne.org/math/CourseNotes/GT.pdf
  7. http://mathworld.wolfram.com/Equi-AffineCurvature.html
  8. http://xahlee.org/SpecialPlaneCurves_dir/specialPlaneCurves.html
  9. http://www.maths.lth.se/matematiklu/personal/sigma/Riemann.pdf

പുറംകണ്ണികൾ

തിരുത്തുക
 കടപ്പാട്: കേരള സർക്കാർ ഗ്നൂ സ്വതന്ത്ര പ്രസിദ്ധീകരണാനുമതി പ്രകാരം ഓൺലൈനിൽ പ്രസിദ്ധീകരിച്ച മലയാളം സർ‌വ്വവിജ്ഞാനകോശത്തിലെ അഫൈൻ ജ്യാമിതി എന്ന ലേഖനത്തിന്റെ ഉള്ളടക്കം ഈ ലേഖനത്തിൽ ഉപയോഗിക്കുന്നുണ്ട്. വിക്കിപീഡിയയിലേക്ക് പകർത്തിയതിന് ശേഷം പ്രസ്തുത ഉള്ളടക്കത്തിന് സാരമായ മാറ്റങ്ങൾ വന്നിട്ടുണ്ടാകാം.
"https://ml.wikipedia.org/w/index.php?title=അഫൈൻ_ജ്യാമിതി&oldid=3832128" എന്ന താളിൽനിന്ന് ശേഖരിച്ചത്