nuclear weapon that uses the energy from a primary nuclear fission reaction to compress and ignite a secondary nuclear fusion reaction. The result is greatly increased explosive power when compared to single-stage fission weapons. It is colloquially referred to as a hydrogen bomb or H-bomb because it employs hydrogen fusion. The fission stage in such weapons is required to cause the fusion that occurs in thermonuclear weapons.[1]

The concept of the thermonuclear weapon was first developed and used in 1952 and has since been employed by most of the world's nuclear weapons.[2] The modern design of all thermonuclear weapons in the United States is known as the Teller-Ulam configuration for its two chief contributors, Edward Teller and Stanislaw Ulam, who developed it in 1951[3] for the United States, with certain concepts developed with the contribution of John von Neumann. The first test of a hydrogen bomb prototype was the "Ivy Mike" nuclear test in 1952, conducted by the United States. The first ready-to-use thermonuclear bomb "RDS-6s" ("Joe 4") was tested on August 12, 1953, in the Soviet Union. Similar devices were developed by the United Kingdom, China, and France.

As thermonuclear weapons represent the most efficient design for weapon energy yield in weapons with yields above 50 kilotons, virtually all the nuclear weapons deployed by the five nuclear-weapon states under the NPT today are thermonuclear weapons using the Teller–Ulam design.[4]

The essential features of the mature thermonuclear weapon design, which officially remained secret for nearly three decades, are: 1) separation of stages into a triggering "primary" explosive and a much more powerful "secondary" explosive, 2) compression of the secondary by X-rays coming from nuclear fission in the primary, a process called the "radiation implosion" of the secondary, and 3) heating of the secondary, after cold compression, by a second fission explosion inside the secondary.

The radiation implosion mechanism is a heat engine that exploits the temperature difference between the secondary stage's hot, surrounding radiation channel and its relatively cool interior. This temperature difference is briefly maintained by a massive heat barrier called the "pusher", which also serves as an implosion tamper, increasing and prolonging the compression of the secondary. If made of uranium, as is almost always the case, it can capture neutrons produced by the fusion reaction and undergo fission itself, increasing the overall explosive yield. In many Teller–Ulam weapons, fission of the pusher dominates the explosion and produces radioactive fission product fallout.[citation needed]''''

"https://ml.wikipedia.org/w/index.php?title=സംവാദം:ഹൈഡ്രജൻ_ബോംബ്&oldid=2241631" എന്ന താളിൽനിന്ന് ശേഖരിച്ചത്
"ഹൈഡ്രജൻ ബോംബ്" താളിലേക്ക് മടങ്ങുക.