"അതിദ്രാവകം" എന്ന താളിന്റെ പതിപ്പുകൾ തമ്മിലുള്ള വ്യത്യാസം

(ചെ.) r2.7.1) (യന്ത്രം ചേർക്കുന്നു: ar, az, bn, bs, ca, cs, de, es, et, eu, fa, fi, fr, he, hr, hu, id, it, ja, ko, la, lmo, nds, nl, no, pl, pt, ro, ru, simple, sk, sr, sv, uk, zh
No edit summary
വരി 8:
വരെ താഴ്ത്തിയാൽ അതു [[ദ്രാവകം|ദ്രാവകമായി]] മാറുന്നു. താപനില 2.186<sup>o</sup>k ആകുമ്പോൾ അതിന് വീണ്ടും പ്രാവസ്ഥാപരിണാമം (phase change) സംഭവിക്കുന്നു. [[ലീനതാപം]] (latent heat) ഇതിൽ അന്തർഭവിച്ചിട്ടില്ല. ഒരു പ്രാവസ്ഥാപരിണാമമാണിത്. എന്നാൽ ഹീലിയം, ദ്രാവകമായിത്തന്നെ വർത്തിക്കുന്നതാണ്. ഈ പ്രത്യേക താപനിലയെ ലാംഡ (λ)-അങ്കമെന്നു പറയുന്നു. ഹീലിയം ദ്രാവകം λ-അങ്കത്തിനു മുകളിലായിരിക്കുമ്പോൾ അത് ദ്രവഹീലിയം I എന്നും, താഴെ ആയിരിക്കുമ്പോൾ ദ്രവഹീലിയം II എന്നുമാണ് അറിയപ്പെടുന്നത്. ദ്രവഹീലിയം II-ന്റെ സവിശേഷതയാണ് അതിദ്രാവകത്വം.
 
അതിദ്രാവകാവസ്ഥയിലെത്തിയ ഹീലിയത്തിന്റെ മറ്റനേകം ഗുണധർമങ്ങൾ കണ്ടുപിടിക്കപ്പെട്ടിട്ടുണ്ട്. താപനില ഉയരുമ്പോൾ സാധാരണ ദ്രാവകങ്ങളുടെ സാന്ദ്രത കുറയുകയും, താഴുമ്പോൾ കൂടുകയും ചെയ്യുന്നു. എന്നാൽ അതിദ്രാവകത്തിന്റെ സാന്ദ്രതയാകട്ടെ താപനിലയോടൊപ്പം ഉയരുകയും താഴുകയും ചെയ്യുന്നു. ഇതിൽനിന്നും, അതിദ്രാവകത്തിന്റെ വ്യാപ്തിവികസനീയത (volume expansivity)<ref>[http://pubs.acs.org/doi/abs/10.1021/je010242u വ്യാപ്തിവികസനീയത (volume expansivity)]</ref> ന്യൂനസംഖ്യയാണെന്ന് അനുമാനിക്കേണ്ടിയിരിക്കുന്നു.
 
==ദ്രവഹീലിയത്തിന്റെ ഗുണധർമങ്ങൾ==
 
ദ്രവനിരപ്പിനുമുകളിൽനിന്നും ദ്രവഹീലിയത്തിന്റെ ബാഷ്പം (vapour)<ref>[http://www.bipm.org/utils/common/pdf/its-90/SUPChapter4.pdf ദ്രവഹീലിയത്തിന്റെ ബാഷ്പം (vapour)]</ref> ഒരു പമ്പ് ഉപയോഗിച്ചു നീക്കം ചെയ്താൽ അതു താണ താപനിലയിൽ ശക്തിയോടെ തിളച്ചുമറിയുന്നതു കാണാം. എന്നാൽ λ-അങ്കത്തിലെത്തുമ്പോൾ തിളയ്ക്കൽ പെട്ടെന്നു നില്ക്കുന്നു. അതിനുശേഷവും ദ്രാവകത്തിന്റെ ബാഷ്പനം തുടരുമെങ്കിലും ദ്രാവകവും ദ്രവനിരപ്പും നിശ്ചലമായിരിക്കും. സീമാതീതമായ താപചാലകത്വം ദ്രവഹീലിയം II-ന്റെ ഒരു ഗുണധർമമാണെന്ന് പില്ക്കാലത്ത് കീസം (keesom) എന്ന ശാസ്ത്രജ്ഞൻ കണ്ടുപിടിച്ചപ്പോൾ മാത്രമാണ് ഈ പ്രതിഭാസം വ്യക്തമായി ശാസ്ത്രജ്ഞർക്ക് മനസ്സിലായത്. ചില പ്രത്യേക പരിതഃസ്ഥിതികളിൽ ഏറ്റവും നല്ല താപചാലകമാണ് (heat conductor)<ref>[http://answers.yahoo.com/question/index?qid=20090103013552AAP3jgK താപചാലകമാണ് (heat conductor)]</ref> [[ചെമ്പ്]]. ചെമ്പിന്റെ ഏതാണ്ട് 10,000 മടങ്ങുവരെ താപചാലനശേഷി, ദ്രവഹീലിയം II-നുണ്ട്.
 
==ശ്യാനത==
 
അതിദ്രാവകത്തിന്റെ മറ്റൊരു ശ്രദ്ധേയമായ പ്രത്യേകത, അസാധാരണമാംവിധം താണ ശ്യാനത (viscosity)<ref>[http://www.jstor.org/pss/96552 ശ്യാനത (viscosity)]</ref> ആണ്. ഇടുങ്ങിയ നാളികളിലൂടെ ഒഴുകുന്ന ദ്രാവകത്തിന്റെ പ്രവാഹനിരക്ക് നിർണയിക്കുന്ന പോയ്സ്യൂൾ (Poiseuille)- നിയമം<ref>[http://hyperphysics.phy-astr.gsu.edu/hbase/ppois.html പോയ്സ്യൂൾ നിയമം (Poiseuille Law)]</ref> അനുസരിച്ച് പ്രവാഹനിരക്ക് ശ്യാനതയ്ക്കു വ്യുത്ക്രമാനുപാതികമായിരിക്കണം. ദ്രവഹീലിയത്തിന്റെ പ്രവാഹനിരക്ക് λ-അങ്കത്തിലെത്തുമ്പോൾ പെട്ടെന്ന് ക്രമാധികം ഉയരുന്നതായി പരീക്ഷണം വഴി കണ്ടിട്ടുണ്ട്. ഇതു വളരെ നിസ്സാരമായ ശ്യാനതയെ സൂചിപ്പിക്കുന്നു. ദ്രവഹീലിയത്തിന് അപ്രതിരോധ്യമായി ഒഴുകാൻ കഴിയുന്നതിന്റെ കാരണമിതാണ്.
 
==ഫൗണ്ടൻപ്രഭാവം==
 
അതിദ്രാവകത്വവുമായി ബന്ധപ്പെട്ട ഒരു പ്രതിഭാസമാണ് ''ഫൗണ്ടൻപ്രഭാവം'' (fountain effect)<ref>[http://cryo.gsfc.nasa.gov/introduction/liquid_helium.html ഫൗണ്ടൻപ്രഭാവം (fountain effect)]</ref> ഒരു ദ്രവഹീലിയം ബാത്തിൽ (bath) എമറി പൌഡർ നിറച്ച ഒരു തുറന്ന പാത്രം, താഴ്ത്തിവയ്ക്കുന്നു. പാത്രത്തിന്റെ മുകൾഭാഗം വിസ്താരം കുറഞ്ഞ ഒരു കുഴലാണ്. തുറന്ന അടിഭാഗത്ത് ഒരു കമ്പിവല ഘടിപ്പിച്ചിട്ടുള്ളതിനാൽ പാത്രത്തിൽനിന്നും പൌഡർ വീണുപോകുന്നില്ല. എമറി പൌഡറിൽ ഒരു ഫ്ളാഷ് ലൈറ്റിൽ നിന്നുള്ള കിരണങ്ങൾ പതിപ്പിച്ചാൽ അത് അല്പം ചൂടു പിടിക്കും. ഇതേത്തുടർന്ന് ചെറിയൊരു ഹീലിയം ഫൌണ്ടൻ രൂപംകൊള്ളുന്നതായി കാണാം. താപനില കുറഞ്ഞ ഭാഗത്തുനിന്നും താപനില കൂടിയ ഭാഗത്തേക്കു ഹീലിയം ദ്രാവകം ഇരച്ചുകയറുന്നതാണ് ഇതിനു കാരണം. സാധാരണ ദ്രാവകങ്ങളിൽ നേരേ മറിച്ചാണ് സംഭവിക്കുന്നത്.
 
മറ്റൊരു സവിശേഷത, തുറന്ന പാത്രത്തിൽ വച്ചിരിക്കുന്ന ദ്രവഹീലിയം II കനം കുറഞ്ഞ ഫിലിമിന്റെ രൂപത്തിൽ പാത്രത്തിന്റെ ഭിത്തികളിലൂടെ സാവധാനം മുകളിലേക്ക് ഇഴഞ്ഞുകയറി പാത്രത്തിനുപുറത്തു കടക്കുമെന്നുള്ളതാണ് . ഒഴിഞ്ഞ ഒരു ബീക്കർ ദ്രവഹീലിയം ബാത്തിൽ ഭാഗികമായി മുക്കിവച്ചിരിക്കുന്നു. അല്പസമയത്തിനുള്ളിൽ ബീക്കറിൽ ദ്രവഹീലിയം പ്രത്യക്ഷപ്പെടുന്നതു കാണാം. ക്രമേണ ബീക്കറിലെ ദ്രവനിരപ്പുയർന്ന്, പുറത്തെ ദ്രവനിരപ്പിനൊപ്പമെത്തുന്നു. ഈ നിലയിൽ ബീക്കർ അല്പമൊന്നുയർത്തിവച്ചാൽ ബീക്കറിലെ ദ്രവനിരപ്പു താഴുന്നതു കാണാം. ബീക്കറിലേയും ബാത്തിലേയും ദ്രവനിരപ്പ് തുല്യമാകുന്നതുവരെ ഇതു തുടരുന്നു. ബീക്കർ ബാത്തിലെ ദ്രവനിരപ്പിനുമുകളിൽ പിടിച്ചിരുന്നാലും അതിൽനിന്നു ദ്രാവകം പുറത്തുകടന്നു ബാത്തിലേക്കു തുള്ളിതുള്ളിയായി പതിക്കുന്നതാണ്.
 
==ക്വാണ്ടംദ്രവഗതികം==
[[File:Liquid helium Rollin film.jpg|thumb|250px|right|പത്രത്തിന്റെ ഭിത്തിയിലൂടെ ഇഴഞ്ഞുകയറി നിപതിക്കുന്ന ഹീലിയം]]
 
രണ്ടു സിദ്ധാന്തങ്ങൾ ദ്രവഹീലിയം II-നെ സംബന്ധിച്ച് ആവിഷ്കരിക്കപ്പെട്ടിട്ടുണ്ട്. ലാന്ഡോ(Landau)യുടെ സിദ്ധാന്തമനുസരിച്ച് ദ്രവഹീലിയം II-ന്റെ ഊർജതലങ്ങൾ അവിച്ഛിന്നമായ രണ്ട് ഊർജമേഖലകളുടെ അതിവ്യാപനംമൂലം ഉണ്ടായിട്ടുള്ളവയാണ്. ഇവയിൽ ഒന്ന് ''ഫോണോൺ'' (Phonon:ശബ്ദത്തിന്റെ ക്വാണ്ടം) ഊർജനിലകളെയും മറ്റേത് ''റോട്ടോൺ'' (Roton:ഭ്രമിളഗതി-Vortex motion യുടെ ക്വാണ്ടം) ഊർജനിലകളെയും പ്രതിനിധാനം ചെയ്യുന്നു. ഏറ്റവും കുറഞ്ഞ റോട്ടോൺ ഊർജനില ഏറ്റവും കുറഞ്ഞ ഫോണോൺ ഊർജനിലയേക്കാൾ അല്പം മുകളിലായതിനാൽ അവയ്ക്കിടയിൽ ഒരു ഊർജാന്തരാളം (energy gap) ഉണ്ടായിരിക്കും. ഈ തത്ത്വത്തെ അടിസ്ഥാനമാക്കി മറ്റുചില സങ്കല്പനങ്ങളുടെ സഹായത്തോടെ വികസിപ്പിച്ചെടുത്ത ലാൻഡോയുടെ ക്വാണ്ടംദ്രവഗതികം (ക്വാണ്ടം ഹൈഡ്രോഡൈനാമിക്സ്) ദ്രവഹീലിയം II-ന്റെ അസാധാരണ സ്വഭാവങ്ങളെ ഏറെക്കുറെ തൃപ്തികരമായി വിശദീകരിക്കുന്നുണ്ട്.
 
==ക്വാണ്ടംസംഘനനം==
 
ക്വാണ്ടം സാംഖ്യികബലതന്ത്രത്തെ (Quantum Statistical Mechanics)<ref>[http://home.comcast.net/~szemengtan/StatisticalMechanics/QuantumStatisticalMechanics.pdf ക്വാണ്ടം സാംഖ്യികബലതന്ത്രത്തെ (Quantum Statistical Mechanics)]</ref> അടിസ്ഥാനമാക്കി എഫ്. ലണ്ടൻ ആവിഷ്കരിച്ച മറ്റൊരു സിദ്ധാന്തവും നിലവിലുണ്ട്. അതനുസരിച്ച് ദ്രവഹീലിയം I-ൽ നിന്നും ദ്രവഹീലിയം II-ലേക്കുള്ള സംക്രമണം ഒരു പ്രത്യേകതരം ക്വാണ്ടംസംഘനനം (Quantum condensation)<ref>[http://sites.google.com/site/quantcond/ ക്വാണ്ടംസംഘനനം (Quantum condensation)]</ref> ആണ്. ബോസ്-ഐൻസ്റ്റൈൻ (Bose Einstein)<ref>[http://www.jupiterscientific.org/sciinfo/boseeinstein.html ബോസ്-ഐൻസ്റ്റൈൻ (Bose Einstein)]</ref> സംഘനനം എന്ന പേരിലാണിതറിയപ്പെടുന്നത്. ലാൻഡോയുടെയും ലണ്ടന്റെയും വീക്ഷണങ്ങളെ കണക്കിലെടുത്തുകൊണ്ട് ടിസ്സാ (Tisza), ഹീലിയത്തിന് ഒരു ''ദ്വയദ്രവമാതൃക'' (Two fluid model)<ref>[http://wins.engr.wisc.edu/teaching/mpfBook/node14.html ദ്വയദ്രവമാതൃക (Two fluid model)]</ref> അവതരിപ്പിക്കുകയുണ്ടായി. അതനുസരിച്ച്, ദ്രവഹീലിയം II രണ്ടുതരം ദ്രാവകങ്ങളുടെ ഒരു മിശ്രിതമാണ്; ഒന്ന് സാധാരണ-അണുക്കളും മറ്റേത് അതിദ്രാവക-അണുക്കളും ചേർന്നുണ്ടായതായി കരുതണം. അതിദ്രാവക-അണുക്കൾക്കു സാധാരണ അണുക്കളുടെ ഇടയിൽ ഘർഷണംകൂടാതെ സഞ്ചരിക്കാൻ കഴിയും. λ-അങ്കത്തിൽ എല്ലാ അണുക്കളും സാധാരണ സ്വഭാവമുള്ളതാണെങ്കിൽ, താപനില ശൂന്യം (0<sup>o</sup>0K) ആകുമ്പോൾ എല്ലാം അതിദ്രാവകസ്വഭാവമുള്ളവയായിത്തീരുന്നു.
 
==അതിചാലകത==
 
അതിദ്രാവകത്വവുമായി വളരെ അടുത്ത സാധർമ്യമുള്ള ഒരു പ്രതിഭാസമാണ് അതിചാലകത. അതിചാലകതയെ ഒരു അതിദ്രാവകപ്രതിഭാസമായി വിവരിക്കാറുണ്ട്. രണ്ടിനേയും വിശദീകരിക്കാൻ ദ്വയദ്രവമാതൃക ഉപയോഗപ്പെടുത്തിവരുന്നു. എന്നാൽ രണ്ടും തമ്മിൽ പ്രകടമായൊരു വ്യത്യാസമുണ്ട്. അതിചാലകത്വത്തെ നിയന്ത്രിക്കുന്നത് അതിചാലക ഇലക്ട്രോണുകൾ ആണ്; അതിദ്രാവകത്തെ നിർണയിക്കുന്നത് അതിദ്രാവക അണുക്കളും. പൌളി(Pauli)യുടെ അപവർജനതത്ത്വം ഇലക്ട്രോൺ അനുസരിക്കുന്നു. പക്ഷേ, അണു ഈ തത്ത്വത്തിനു വിധേയമല്ല. അതിനാൽ രണ്ടിനും ബാധകമായ ശരിയായ അടിസ്ഥാനത്തിലുള്ള ഒരു സാംഖ്യികസിദ്ധാന്തം ആവിഷ്കരിക്കുക ദുഷ്കരമാണ്
 
==അവലംബം==
{{reflist}}
 
{{സർവ്വവിജ്ഞാനകോശം}}
"https://ml.wikipedia.org/wiki/അതിദ്രാവകം" എന്ന താളിൽനിന്ന് ശേഖരിച്ചത്