"സാമാന്യ ആപേക്ഷികതാസിദ്ധാന്തം" എന്ന താളിന്റെ പതിപ്പുകൾ തമ്മിലുള്ള വ്യത്യാസം

തിരുത്തലിനു സംഗ്രഹമില്ല
ഗുരുത്വം എന്ന പ്രതിഭാസത്തിനെ ജ്യാമിതീയമായി വിശദീകരിക്കുവാൻ ശ്രമിക്കുന്ന സിദ്ധാന്തമാണ് '''സാമാന്യ ആപേക്ഷികതാ സിദ്ധാന്തം''' (General theory of relativity). 1916 ൽ [[ആൽബർട്ട് ഐൻസ്റ്റൈൻ|ആൽബർട്ട് ഐൻസ്റ്റീനാണ്]] ഇത് അവതരിപ്പിച്ചത്.<ref>{{cite web|title=Nobel Prize Biography|url=http://nobelprize.org/nobel_prizes/physics/laureates/1921/einstein-bio.html|work=Nobel Prize Biography|publisher=Nobel Prize|accessdate=25 February 2011}}</ref> . അദ്ദേഹം തന്നെ മുൻപ് ആവിഷ്കരിച്ചിരുന്ന [[വിശിഷ്ട ആപേക്ഷികതാ സിദ്ധാന്തം|വിശിഷ്ട ആപേക്ഷികതാ സിദ്ധാന്തത്തിന്റെ]]യും (Special relativity) സർ ഐസക്‌ ന്യൂട്ടൺ ആവിഷ്കരിച്ചിരുന്ന സർവ്വഗുരുത്വാകർഷണനിയമത്തേയും ഏകോപിച്ച് ഉരുത്തിരിച്ച ഒരു സാമാന്യവത്കരണമാണ് ഈ സിദ്ധാന്തത്തിലൂടെ നിലവിൽ വന്നതു്. നിലവിലുള്ള ആധുനിക [[ഭൗതികശാസ്ത്രം]] ഗുരുത്വാകർഷണം എന്ന പ്രതിഭാസത്തെ അംഗീകരിച്ചിട്ടുള്ളത് ഐൻസ്റ്റീന്റെ സാമാന്യ ആപേക്ഷികതാസിദ്ധാന്തം അടിസ്ഥാനമാക്കിയാണ്.
 
സ്ഥലകാല ജ്യാമിതിയുടെ മാറിക്കൊണ്ടിരിക്കാവുന്ന ഒരു ഗുണധർമ്മമായി ആണ് ഐൻസ്റ്റീൻ ഗുരുത്വത്തെ പരിഗണിക്കുന്നതു്. ഒരു നിശ്ചിത സ്ഥലകാലപരിധിയിൽ വിതരണം ചെയ്തപ്പെട്ടിട്ടുള്ളചെയ്യപ്പെട്ടിട്ടുള്ള ദ്രവ്യത്തിന്റെ അളവും ഊർജ്ജവികിരണങ്ങളുമാണ് ആ പരിധിയിൽ ഗുരുത്വബലമായി പ്രകടമാവുന്ന ഇത്തരം സ്വാധീനം ചെലുത്തുക. വ്യത്യസ്ത ബിന്ദുക്കളിലുള്ള ദ്രവ്യത്തിന്റെ അളവു്, അവ തമ്മിൽ വിനിമയം ചെയ്യപ്പെടുന്ന ഊർജ്ജവികിരണങ്ങൾ, സ്ഥലം, സമയം എന്നീ നാലു ഘടകങ്ങൾ സ്ഥലകാലമണ്ഡലത്തിൽ നിരന്തരമായി പ്രയോഗിക്കുന്ന വക്രതയാണ് ഗുരുത്വബലമായി അനുഭവപ്പെടുന്നത് എന്നു് അദ്ദേഹം അനുമാനിച്ചു. അത്തരത്തിലുണ്ടാവുന്ന ഗുരുത്വബലത്തിന്റെ അളവ് സ്ഥലകാലബന്ധം മൂലമുള്ള ആക്കവും([[രേഖീയശക്തിപരിമാണം]] - linear momentum), പിണ്ഡോർജ്ജബന്ധം മൂലമുള്ള ആക്കവും (ഇവയെ എല്ലാം ഒരുമിച്ച് [[ചതുഷ്മാന ശക്തിപരിമാണം]] - Four-momentum എന്നു വിളിക്കാം) അനുസരിച്ചാണ് നിശ്ചയിക്കപ്പെടുക. ഈ നാലു ഘടകങ്ങളും (പിണ്ഡം, ദൂരം, സ്ഥലം, കാലം) ഗുരുത്വബലവും തമ്മിലുള്ള സങ്കീർണ്ണബന്ധം സൂചിപ്പിക്കാൻ ഐൻസ്റ്റീൻ തന്റെ പ്രസിദ്ധമായ ഫീൽഡ് സമവാക്യങ്ങൾ വികസിപ്പിച്ചെടുത്തു.
 
സമയാന്തരാളം, ജ്യാമിതീയ സ്ഥലം, വീഴുന്ന വസ്തുക്കളുടെ പഠനം എന്നിവയിലെല്ലാം ക്ലാസിക്കൽ ഭൌതികത്തിൽ നിന്നും വിഭിന്നമായ അനുമാനങ്ങളാണ് സാമാന്യ ആപേക്ഷികത സിദ്ധാന്തം അവതരിപ്പിക്കുന്നത്. സമയത്തിന്റെ [[ഗുരുത്വദീർഘനം]], ഗുരുത്വം മൂലം പ്രകാശതരംഗത്തിനു സംഭവിക്കുന്ന [[ചുവപ്പുനീക്കം]] (red shift)എന്നിവയെല്ലാം ഇതിനുദാഹരണങ്ങളാണ്. ഐൻസ്റ്റീൻ പ്രവചിച്ചിരുന്ന ഇത്തരം പ്രതിഭാസങ്ങൾ പിൽക്കാലത്ത്പരീക്ഷണ നിരീക്ഷണങ്ങളിലൂടെ തെളിയിക്കപ്പെട്ടിട്ടുണ്ട്. ഗുരുത്വവുമായി ബന്ധപ്പെട്ട മറ്റനേകം സിദ്ധാന്തങ്ങൾ നിലവിലുണ്ടെങ്കിലും ന്യൂട്ടോണിയൻ വിശദീകരണങ്ങൾക്കുപരി (ഊർജ്ജവും പ്രവേഗവും കൂടി ഉൾപ്പെടുത്തി) ഇന്നേവരെ തെളിയിക്കപ്പെട്ടിട്ടുള്ളതിൽ ഘടനാപരമായി ഏറ്റവും ലളിതമായ സിദ്ധാന്തം സാമാന്യ ആപേക്ഷികതയാണ്. സാമാന്യ ആപേക്ഷികതയും ക്വാണ്ടം സിദ്ധാന്തങ്ങളുമായി സംയോജിപ്പിച്ച് സമ്പൂർണ്ണ ക്വാണ്ടം ഗുരുത്വസിദ്ധാന്തം ഉണ്ടാക്കുക എന്ന വലിയ ഭാഗം ഇന്നും ബാക്കിനിൽക്കുന്നുണ്ട്. അത്തരം ഒരു സമ്പൂർണ്ണഗുരുത്വക്വാണ്ടം സിദ്ധാന്തം വഴി, സൂക്ഷ്മവും സ്ഥൂലവുമായ എല്ലാ മേഖലകളിലുമുള്ള എല്ലാതരം ദ്രവ്യോർജ്ജവിനിമയങ്ങളേയും ഊർജ്ജതന്ത്രത്തിനു വിശദീകരിക്കാനാവുമെന്നു് ശാസ്ത്രജ്ഞർ വിശ്വസിക്കുന്നു.
[[1905]]-ൽ [[വിശേഷ ആപേക്ഷികതാസിദ്ധാന്തം]] പ്രസിദ്ധപ്പെടുത്തിയ ശേഷം ഐൻസ്റ്റീൻ [[ഗുരുത്വാകർഷണം|ഗുരുത്വാകർഷണ]]ത്തെ ആപേക്ഷികതയുമായി ബന്ധപ്പെടുത്താൻ ശ്രമിച്ചു.[[1907]]-ൽ ബാഹ്യബലങ്ങളില്ലാതെ സ്വതന്ത്രമായി താഴേക്കു വീഴുന്ന ഒരു നിരീക്ഷകന്റെ(observer) ഉദാഹരണത്തിലൂടെ തുടങ്ങിയ അദ്ദേഹം 1915 നവംബറിൽ പ്രഷ്യൻ അക്കാദമി ഓഫ് സയൻസിൽ തന്റെ [[ഫീൽഡ് സമവാക്യങ്ങൾ]] അവതരിപ്പിച്ചു. ഈ സമവാക്യങ്ങൾ ദ്രവ്യത്തിന്റെ സാന്നിദ്ധ്യം കൊണ്ട് സ്ഥലകാല ജ്യാമിതിയിലുണ്ടാകുന്ന രൂപവ്യത്യാസം വിശദീകരിക്കുന്നു. ഈ ഫീൽഡ് സമവാക്യങ്ങളാണ് സാമാന്യ ആപേക്ഷികതാ സിദ്ധാന്തത്തിന്റെ അടിത്തറ.
 
ഐൻസ്റ്റീന്റെ ഫീൽഡ് സമവാക്യങ്ങൾ അരേഖീയവും നിർദ്ധാരണം ചെയ്യാൻ വിഷമമേറിയതുമാണ്.[[1916]]-ൽ ഘഗോളോർജ്ജതന്ത്രജ്ഞനായ [[കാൾ ഷ്വാർസ്ചൈൽഡ്]] ഫീൽഡ് സമവാക്യങ്ങൾക്ക് ഒരു ക്രിത്യമായകൃത്യമായ നിർദ്ധാരണമൂല്യം- [[ഷ്വാർസ്ചൈൽഡ് മെട്രിക്]]-കണ്ടെത്തി.അതേ വർഷം തന്നെ ഷ്വാർസ്ചൈൽഡ് മെട്രിക് [[ചാർജ്ജ്|ചാർജ്ജു]]ള്ള വസ്തുക്കൾക്കും ബാധകമായ തരത്തിൽ സാമാന്യകരിക്കാനുള്ള(generalizing) ശ്രമം റെയ്സ്നർ നോഡ്സ്റ്റോം മെട്രിക്കിന് രൂപം നൽകി.ഈ നിർദ്ധാരണമൂല്യം ഇന്ന് ചാർജ്ജുള്ള തമോഗർത്തങ്ങളെ വിശദീകരിക്കുന്നതിന് പ്രയോജനപ്പെടുത്തുന്നു. [[1917]]-ൽ ഐൻസ്റ്റീൻ തന്റെ സിദ്ധാന്തം ഉപയോഗിച്ച് പ്രപഞ്ചത്തിന്റെ ഒരു സൈദ്ധാന്തിക മാത്രികമാതൃക മുന്നോട്ടു വച്ചു.അന്നുവരെ നിലനിന്നിരുന്ന സ്ഥിതപ്രപഞ്ചം(static universe) എന്ന പൊതുധാരണ നിലനിർത്താനായി അദീഹംഅദ്ദേഹം ഫീൽഡ് സമവാക്യങ്ങളിൽ [[കോസ്മോളജിക്കൽ സ്ഥിരാങ്കം]] എന്നൊരു പദം കൂടി ഉൾപ്പെടുത്തി.[[1929]]-ൽ [[എഡ്‌വിൻ ഹബിൾ]] പ്രപഞ്ചം വിപുലീകരിക്കപ്പെട്ടുകൊണ്ടിരിക്കുകയാണെന്ന് നിരീക്ഷണങ്ങളിലൂടെ തെളിയിച്ചു.[[1922]]-ൽ ഫ്രീഡ്‌മാൻ കോസ്മോളജിക്കൽ സ്ഥിരാങ്കമില്ലാതെ തന്നെ വിപുലീകരിക്കപ്പെടുന്ന പ്രപഞ്ചത്തിനുള്ള മൂല്യങ്ങൾ കണ്ടെത്തി.ഇവയുപയോഗിച്ച് ലെമറ്റർ പ്രപഞ്ചത്തിന്റെ [[ബിഗ് ബാങ് മാത്രികയ്ക്ക്മാതൃകയ്ക്ക് രൂപം നൽകി.ഈ നിർദ്ധാരണമൂല്യങ്ങൾ[[ഫ്രീഡ്‌മാൻ-റോബർട്ട്സൺ-വാക്കർ മെട്രിക്]](FRW metric) എന്നറിയപ്പെടുന്നു.അതിനുശേഷം ഐൻസ്റ്റീൻ 'കോസ്മോളജിക്കൽ സ്ഥിരാങ്ക'ത്തെ 'തന്റെ ജീവിതത്തിലെ ഏറ്റവും വലിയ മണ്ടത്തരം' എന്നാണ് വിശേഷിപ്പിച്ചത്.
 
== ഉദാത്തഭൗതികത്തിൽ നിന്ന് സാമാന്യ ആപേക്ഷികതാസിദ്ധാന്തത്തിലേക്ക് ==
 
സാമാന്യ ആപേക്ഷികതാസിദ്ധാന്തം ഉദാത്ത ഭൗതികത്തിലെ അദിശ ഗുരുത്വത്തിനു പകരം ഒരു സിമട്രിക് രണ്ടാം റാങ്ക് ടെൻസർ നിർദ്ദേശിക്കുന്നു.ഗുരുത്വമണ്ഡലം ദുർബലമാകുകയും പ്രവേഗം പ്രകാശപ്രവേഗത്തെക്കാൾ വളരെക്കുറവായിരിക്കുകയും ചെയ്യുമ്പോൾ ഈ സിദ്ധാന്തം ന്യൂട്ടന്റെ ഗുരുത്വസിദ്ധാന്തത്തിനു സമാനമായ ഫലങ്ങൾ തരുന്നു.
ടെൻസറുകളാൽ നിർമ്മിക്കപ്പെട്ടവയായതുകൊണ്ടുതന്നെ സാമാന്യ ആപേക്ഷികതാ സിദ്ധാന്തം general covariant ആണ്.അതയത്അതായത് എല്ലാ വ്യൂഹങ്ങളിലും അതിന് ഒരേ രൂപമാണുള്ളത്.ഭൗതിക നിയമങ്ങൾക്ക് എല്ലാ വ്യൂഹങ്ങളിലും ഒരേ രൂപം ഉണ്ടായിരിക്കും.ഇത് സാമാന്യ ആപേക്ഷികതാതത്വം എന്നറിയപ്പെടുന്നു.ലഘുസന്ദർഭങ്ങളിൽ സ്ഥലം തുല്യതാതത്വപ്രകാരംസ്ഥലകാലം മിൻകോവ്സ്കിയനാകും. ഭൗതികനിയമങ്ങൾ ലോറൻസ് അപരിവർത്തവും..
 
===മാതൃക നിർമ്മിക്കൽ===
ഇവിടെ ''g<sub>ab</sub>'' മെട്രിക് ടെൻസറാണ്.ഈ സമവാക്യങ്ങളുടെ ഏകജാതീയവും ഐസോട്രൊപികും(Homogeneous and Isotropic) ആയ നിർദ്ധാരണമൂല്യങ്ങൾ, [[ഫ്രീഡ്മാൻ ലെമറ്റർ റോബർട്സൺ നിർദ്ധാരണമൂല്യം|ഫ്രീഡ്മാൻ ലെമറ്റർ റോബർട്സൺ നിർദ്ധാരണമൂല്യങ്ങൾ]], ഭൗതികശാസ്ത്രജ്ഞർക്ക് പ്രപഞ്ചത്തിന്റെ സൈദ്ധാന്തിക മാതൃക നിർമ്മിക്കാൻ സഹായകരമാണ്. പ്രപഞ്ചത്തിന്റെ ചില ചെറിയ ഗുണധർമ്മങ്ങൾ, (ഉദാ.matter density) നിരീക്ഷണങ്ങളിലൂടെ കണ്ടുപിടിച്ച് ഈ സൈദ്ധാന്തിക മാതൃകയുമായി താരതമ്യപ്പെടുത്താം. [[മഹാവിസ്ഫോടനം|മഹാവിസ്ഫോടനത്തെ]]ത്തുടർന്നുണ്ടായ ചെറുമൂലകങ്ങളുടെ രൂപീകരണം ([[ബിഗ്ബാങ് ന്യൂക്ലിയോസിന്തസിസ്]]), ഭൗതികപ്രപഞ്ചത്തിന്റെ ഘടന , [[പശ്ചാത്തല വികിരണം|കോസ്മിക് മൈക്രോവേവ് വികിരണ]]ത്തിന്റെ സാന്നിധ്യം എന്നിവയെക്കുറിച്ച് ലഭ്യമായ നിരീക്ഷണഫലങ്ങളെല്ലാം സാമാന്യ ആപേക്ഷികതയുടെ പ്രവചനങ്ങളെ ശരിവയ്ക്കുന്നു.
 
പ്രപഞ്ചത്തിന്റെ വികാസത്തിന്റെ തോതിനെക്കുറിച്ചുള്ള പഠനം, അതിലെ ദ്രവത്തിന്റെദ്രവ്യത്തിന്റെ അളവ് കണ്ടെത്താൻ സഹായിക്കുന്നു, പക്ഷെ ദ്രവ്യത്തിന്റെ സ്വഭാവം അജ്ഞാതമായിത്തന്നെ നിലനിൽക്കുന്നു. പ്രപഞ്ചത്തിലെ ആകെ ദ്രവ്യത്തിന്റെ 90% [[തമോദ്രവ്യം|തമോദ്രവ്യ]]മാണ്. തമോദ്രവ്യത്തിന് പിണ്ഡം അഥവാ ഗുരുത്വാകർഷണം ഉണ്ട് എങ്കിലും അവ വൈദ്യുത കാന്തിക തരംഗങ്ങളുമായി ഇടപെടു(interaction)ന്നില്ല. നിലവിലുള്ള കണികാഭൗതികസിദ്ധാന്തങ്ങൾ ഉപയോഗിച്ച് ഇവയുടെ സ്വഭാവം വിശദീകരിക്കാൻ സാധ്യമല്ല. [[സൂപ്പർനോവ Iഎ]],കോസ്മിക് ബാക്ഗ്രൗണ്ട് റേഡിയേഷൻ എന്നിവ ഉപയോഗിച്ചുള്ള പഠനങ്ങളിൽ നിന്നും പ്രപഞ്ചത്തിന്റെ വികാസത്തിന്റെ ത്വരണം കൂടുന്നു എന്നും ഈ വികാസത്തെ ഒരു പ്രത്യേക Equation of state ഉള്ള കോസ്മോളജിക്കൽ സ്ഥിരാങ്കം അഥവാ [[തമോ ഊർജ്ജം]] കാര്യമായി സ്വാധീനിക്കുന്നു എന്നും മനസ്സിലാക്കാം.
 
വളരെയധികം ത്വരണം ഉള്ള ഏകദേശം <math>10^{-33}</math> സെക്കന്റ് സമയം മാത്രം നീണ്ടു നിന്ന പ്രപഞ്ചത്തിന്റെ ഒരു പരിണാമദശ (inflationary phase)യെക്കുറിച്ച 1980-ൽ പരാമർശിക്കപ്പെട്ടിരുന്നു. ഇത് [[മഹാവിസ്ഫോടന സിദ്ധാന്തം]] ഉപയോഗിച്ച് വിശദീകരിക്കാം. എന്നാൽ ഇപ്പോഴുള്ള പ്രപഞ്ചത്തിന്റെ ത്വരണം ഈ പ്രതിഭാസത്തിനു സമാനമല്ല എന്നും ഇതു വിശദീകരിക്കാൻ ഗുരുത്വാകർഷണത്തിന്റെ ക്വാണ്ടം സിദ്ധാന്തം ഉപയോഗിക്കാം എന്നും ശാസ്ത്രജ്ഞർ വിശ്വസിക്കുന്നു.
"https://ml.wikipedia.org/wiki/പ്രത്യേകം:മൊബൈൽവ്യത്യാസം/1016535" എന്ന താളിൽനിന്ന് ശേഖരിച്ചത്