"സാമാന്യ ആപേക്ഷികതാസിദ്ധാന്തം" എന്ന താളിന്റെ പതിപ്പുകൾ തമ്മിലുള്ള വ്യത്യാസം

ഗുരുത്വാകർഷണത്തിന്റെ അഭാവത്തിലാണ് വിശിഷ്ട ആപേക്ഷികത നിർവ്വചിക്കപ്പെട്ടിരിക്കുന്നത് .ഗുരുത്വാകർഷണബലം കൂടി പരിഗണിക്കുമ്പോൾപ്രകാശസ്തൂപികയിലെ [[പ്രകാശസദൃശം|പ്രകാശസദൃശ]] (time-like) രേഖകൾക്ക് വളവുണ്ടാകുന്നതായി കാണാം.അതായത് ഗുരുത്വാകർഷണത്തിന്റെ ആവിർഭാവം സ്ഥല-കാലജ്യാമിതിക്ക് വളവ് ഉണ്ടാക്കുന്നു.<ref>{{Harvnb|Ehlers|1973|loc=sec. 1.4}}, {{Harvnb|Schutz|1985|loc=sec. 5.1}}</ref>
 
ആദ്യകാലത്ത് സ്വതന്ത്രപതനത്തിലൂടെ നിർവചിക്കപ്പെട്ട വ്യൂഹങ്ങളും വിശിഷ്ടസിദ്ധാന്തം പ്രായോഗികമായ വ്യൂഹങ്ങളും ഒന്നു തന്നെയാണോ എന്ന് വ്യക്തമായിരുന്നില്ല. എന്നാൽ വിശിഷ്ട സിദ്ധാന്തത്തിലെ വ്യൂഹങ്ങളുടെ ചട്ടക്കൂടിൽ നിന്നുകൊണ്ടു തന്നെ ഗുരുത്വാകർഷണമണ്ഡലത്തിൽക്കൂടി സഞ്ചരിക്കുമ്പോൾ [[പ്രകാശം|പ്രകാശ]]ത്തിന്റെപ്രകാശത്തിനുണ്ടാവുന്ന [[ആവൃത്തി]]ക്കുണ്ടാകുന്ന മാറ്റം([[gravitational redshift]])ചുവപ്പുനീക്കം വിശദീകരിക്കാൻ കഴിഞ്ഞു.കൃത്യമായ പരീക്ഷണങ്ങളിലൂടെ സ്വതന്ത്രപതനവ്യൂഹങ്ങൾ വിശിഷ്ട ആപേക്ഷികതയിലെ വ്യൂഹങ്ങൾ തന്നെയെന്ന് തെളിയിക്കപ്പെട്ടു.ഈ തെളിവിന്റെ സാമാന്യപ്രസ്താവന,വിശിഷ്ട ആപേക്ഷികസിദ്ധാന്തത്തിലെ നിയമങ്ങൾ സ്വതന്ത്രമായി നിപതിക്കുന്ന വ്യൂഹങ്ങളിലും പ്രായോഗികമാണെന്ന സിദ്ധാന്തം ,[[തുല്യതാ തത്വം|ഐൻസ്റ്റീന്റെ തുല്യതാ തത്വം]](Einstein equivalence principle) എന്നറിയപ്പെടുന്നു.
 
ഇതേ പരീക്ഷണങ്ങൾ തന്നെ ഗുരുത്വാകർഷണമണ്ഡലത്തിലെ ക്ലോക്കുകളിലെ സമയം വിശിഷ്ട ആപേക്ഷികതയുടെ നിയമങ്ങൾ പാലിക്കുന്നില്ലെന്നു തെളിയിച്ചു.സ്ഥലകാല ജ്യാമിതിയുടെ ഭാഷയിൽപ്പറഞ്ഞാൽ സമയം [[മിൻകോവ്സ്കി മെട്രിക്]] ഉപയോഗിച്ച് അളക്കാവുന്നതല്ല.ലഘുസന്ദർഭങ്ങളിൽ സ്വതന്ത്രമായി പതിക്കുന്ന വ്യൂഹങ്ങൾ ഏകദേശം മിൻകോവ്സ്കിയനാണെന്നു പറയാം.ഗുരുത്വാകർഷണത്തിന്റെ സാന്നിദ്ധ്യത്തിൽ ഈ മിൻകോവ്കി തലത്തിന്റെ സാമാന്യരൂപമാണ് വേണ്ടത്. സാമാന്യ ആപേക്ഷികതയിൽ സ്ഥലകാലത്തിന്റെ ജ്യാമിതിയെക്കുറിക്കുന്ന മെട്രിക് മിങ്കോവ്സ്കിയൻ അല്ല,അതിന്റെ സാമാന്യരൂപമായ സ്യൂഡോ റൈമാനിയൻ മെട്രിക്( pseudo-Riemannian metric) ആണ്.ഓരോ റൈമാനിയൻ മെട്രിക്കും ഒരു ലെവി സിവിറ്റ ബന്ധന-തുല്യതാതത്വം പാലിക്കുകയും ലഘുസന്ദർഭങ്ങളിൽ (locally) ത്രിമാനസ്ഥലത്തെ മിൻകോവ്സ്കിയനാക്കുകയും ചെയ്യുന്ന തരത്തിലുള്ള ബന്ധനം-വുമായി ബന്ധപ്പെട്ടിരിക്കുന്നു.
"https://ml.wikipedia.org/wiki/പ്രത്യേകം:മൊബൈൽവ്യത്യാസം/995158" എന്ന താളിൽനിന്ന് ശേഖരിച്ചത്