"അതിചാലകത" എന്ന താളിന്റെ പതിപ്പുകൾ തമ്മിലുള്ള വ്യത്യാസം

No edit summary
വരി 1:
{{prettyurl|Superconductivity}}
[[പ്രമാണം:Meissner_effect_p1390048.jpg |right | thumb| അതിചാലകത്തിനു മുകളിൽ ഉയർന്നു നിൽക്കുന്ന കാന്തം - മെയിസ്നർ പ്രഭാവം വിശദമാക്കുന്നു]]
ഒരു [[ചാലകം|ചാലകത്തിൽ]] കൂടി [[വൈദ്യുതി]] കടത്തിവിടുമ്പോഴുണ്ടാകുന്ന [[വൈദ്യുതരോധം|പ്രതിരോധത്തെ]] അതിന്റെ ഏറ്റവും താഴ്ന്ന അവസ്ഥയിലേക്ക്‌ കുറക്കുമ്പോഴുള്ള ചാലകത്തിന്റെ അവസ്ഥയെ ആണ്‌ '''അതിചാലകത''' ''(Super conductivity)'' എന്നു പറയുന്നത്‌. ഇന്ന് ലോകത്ത്‌ ഉത്പാദിപ്പിക്കപ്പെടുന്ന [[ഊർജ്ജം|ഊർജ്ജത്തിന്റെ]] നഷ്ടത്തിൽ പകുതിയും സംഭവിക്കുന്നത്‌ പ്രസരണത്തിലാണ് (ഒരിടത്തു നിന്നും മറ്റൊരിടത്തേക്ക്‌ കൊണ്ടു പോകുമ്പോൾ). അതിചാലകതയെ ഉപയോഗപ്പെടുത്തുമ്പോൾ ഈയൊരു നഷ്ടത്തെ ഒഴിവാക്കാനാകുമെന്നാണ്‌ ഇന്നത്തെ ഗവേഷണഫലങ്ങൾ സൂചിപ്പിക്കുന്നത്‌. അതിചാലകത എന്ന പ്രതിഭാസം കണ്ടു പിടിച്ചിട്ട്‌ ഒരുനൂറ്റാണ്ടോളംഒരു നൂറ്റാണ്ടോളം ആയെങ്കിലും, അത്‌ പ്രായോഗികമാക്കുവാനുള്ള ബുദ്ധിമുട്ടുകൊണ്ട്‌ ഇന്നും പരീക്ഷണശാലകളിൽ തന്നെ ഒതുങ്ങി നിൽക്കുന്നു.
 
== ചരിത്രം ==
1908-ൽ കാമർലിങ്ങ്‌ ഓൺസ് ''‌(Kamerlingh Onnes)'' [[ഹീലിയം]] എന്ന വാതകത്തെ ശീതീകരിച്ച്‌ ദ്രവ രൂപത്തിലാക്കി. [[കേവലപൂജ്യം|കേവല പൂജ്യത്തോടടുത്ത]] 4.2K ലാണ്‌ ഇത്‌ സാധിച്ചെടുത്തത്‌. ഇതെ തുടർന്ന്‌ കാമർലിങ്ങ്‌ ഓൺസും സംഘവും താഴ്‌ന്ന താപനിലയിൽ വസ്തുക്കൾക്കുണ്ടാവുന്ന മാറ്റങ്ങളെ കുറിച്ച്‌ പഠിക്കുവാൻ തുടങ്ങി. അപ്പോഴാണ്‌ അവർ ഒരു കാര്യം കണ്ടെത്തിയത്‌. മെർക്കുറിയുടെ പ്രതിരോധം 4K ൽ കുത്തനെ കുറഞ്ഞ്‌ പൂജ്യമായിത്തീരുന്നു. അത്രയും നാൾ വരെ പൂജ്യം കെല്വിനിൽകെൽവിനിൽ മാത്രമേ ഇത്‌ സംഭവിക്കൂ എന്നായിരുന്നു വിശ്വാസം.
ഒരു [[ചാലകം]] അതിചാലകമായിമാറുന്നഅതിചാലകമായി മാറുന്ന താപനിലയാണ്‌ സംക്രമണ താപനില (transition temparature). ഓരോ പദാർഥത്തിനും സംക്രമണ താപനില വത്യസ്തമായിരിക്കുംവ്യത്യസ്തമായിരിക്കും. ഈ കണ്ടെത്തലോടുകൂടി അതിചാലകത അന്തരീക്ഷ താപനിലയിലും കൊണ്ടുവരാം എന്ന വിശ്വാസം ശക്തമായി. ലോകത്തിന്റെ പല ഭാഗങ്ങളിലുള്ള ശാസ്ത്രൻഞ്ജന്മാർശാസ്ത്രജ്ഞന്മാർ മറ്റുമേഖലകളെല്ലാം വിട്ടെറിഞ്ഞ്‌ അതിചാലകതയിലേക്ക്‌ തിരിഞ്ഞു.
 
 
വരി 17:
}}</ref>. 1933-ൽ ഡബ്ല്യു. മെയ്‌സ്‌നർ, ആർ. ഓഷൻ ഫെൽഡ്‌ എന്നീ ശാസ്ത്രജ്ഞർ ശക്തികുറഞ്ഞ [[കാന്തികക്ഷേത്രം]] സ്ഥിതിചെയ്യുന്ന അതിചാലക വസ്തു കാന്തികക്ഷേത്രത്തെ ഉൾക്കൊള്ളുന്നില്ല എന്നു കണ്ടെത്തി. അതായത്‌ അതിചാലക വസ്തുവിന്റെ ഉള്ളിൽ കാന്തികക്ഷേത്രം ഉണ്ടായില്ല. ഈ രണ്ടു കണ്ടുപിടുത്തങ്ങളും വളരെ വലിയ സാധ്യതകളിലേക്കാണ്‌ വഴിതുറന്നിരിക്കുന്നത്‌.
 
[[വൈദ്യുതി]] യഥേഷ്ടം കടന്നു പോകുന്ന വസ്തുക്കളെയാണ്‌ നാം [[വൈദ്യുത ചാലകം|സുചാലകങ്ങൾചാലകങ്ങൾ]] എന്നു വിളിക്കുന്നത്‌. ഉദാ‍: [[ഇരുമ്പ്]]‌, [[ചെമ്പ്‌]] മുതലായവ. പക്ഷേ ഈ ചാലകങ്ങളിലെല്ലാം തന്നെ [[വൈദ്യുതി]] കടന്നുപോകുന്നതിന്‌ പ്രതിരോധം''(Resistance)'' ഉണ്ട്‌. ഈ പ്രതിരോധം [[ഊഷ്മാവ്‌]] കുറയുന്നതിനനുസരിച്ച്‌ ക്രമമായി കുറയും. അങ്ങനെ താപനില കുറഞ്ഞു കുറഞ്ഞ്‌ [[കേവല പൂജ്യം|കേവല പൂജ്യത്തിനടുത്തെത്തിയാൽ]] രോധവും ഇല്ലാതാവും. രോധം പൂജ്യത്തോടടുക്കുമ്പോൾ വൈദ്യുത വാഹന ക്ഷമത (electrical conductivity) സീമാതീതമായി വർദ്ധിക്കുന്നു. ഈ അസാധാരണമായ പ്രതിഭാസമാണ്‌ അതിചാലകത.
 
വൈദ്യുത ചാലകങ്ങളിലൂടെ [[വൈദ്യുതി]] പ്രവഹിക്കാൻ കാരണം അവയിലെ സ്വതന്ത്ര ഇലക്ട്രോണുകളാണ്‌. ഊഷ്മാവ്‌ കൂടുമ്പോൾ ഇലക്ട്രോണുകളുടെ ചലനത്തിന്‌ തടസമുണ്ടാവുകയും വൈദ്യുത വാഹന ശേഷി കുറയുകയും ചെയ്യുന്നു. ഊഷ്മാവ്‌ കുറയുമ്പോൾ പ്രതിരോധം കുറയുമെങ്കിലും അത്‌ പൂർണമായി ഇല്ലതാകുന്നില്ലഇല്ലാതാകുന്നില്ല. പക്ഷേ ചില പ്രത്യേക വസ്തുക്കൾക്ക്‌ പ്രതിരോധം പൂർണമായും ഇല്ലാതാവും ഇവയാണ്‌ അതിചാലകങ്ങൾ. എല്ലാ ലോഹങ്ങളും അതിചാലകങ്ങളല്ല.
 
[[കാന്തികപ്ലവനം|കാന്തികപ്ലവന]] തത്ത്വമനുസരിച്ച്‌ അവിശ്വസനീയമായ വേഗത്തിൽ [[ഭൂമി|ഭൂമിയുടെ]] കാന്തികക്ഷേത്രം ഉപയോഗിച്ച്‌ സഞ്ചരിക്കുന്ന വാഹനങ്ങൾ, കൈവെള്ളയിലൊതുങ്ങുന്നതും ഇന്നുള്ളതിന്റെ ആയിരക്കണക്കിനിരട്ടി ശക്തിയും ബുദ്ധികൂർമ്മതയും ഉള്ള കമ്പ്യൂട്ടറുകൾ, അവിശ്വസനീയമായ കഴിവുകളുള്ള വൈദ്യുതോപകരണങ്ങൾ, [[അണുസംയോജനം]] വഴി ഊർജ്ജം ഉത്പാദിപ്പിക്കുന്ന അപകടകാരികളേ അല്ലാത്ത ആണവ ഊർജ്ജോത്പാദിനികൾ തുടങ്ങി ലോകത്തിന്റെ മുഖഛായ തന്നെ മാറ്റാൻ കഴിവുള്ള കണ്ടുപിടുത്തങ്ങളാണ്‌ അതിചാലകതയെ അടിസ്ഥാനമാക്കി സങ്കൽപ്പിക്കപ്പെട്ടിട്ടുള്ളത്‌.
 
ചാലകങ്ങളിലുണ്ടാകുന്ന വൈദ്യുതരോധത്തിന്റെ പ്രധാനകാരണം വൈദ്യുതി ചാലന സമയത്ത്‌ ചൂട്‌ മൂലമുണ്ടാകുന്ന പ്രതിരോധമാണ്‌. താപനില സാധ്യമായിടത്തോളം താഴ്ത്തികൊണ്ടുവരികയാണ്‌താഴ്ത്തിക്കൊണ്ടുവരികയാണ്‌ അതിനുള്ള പ്രതിവിധി. അതായത്‌ [[കേവലപൂജ്യം]](0°കെൽവിൻ അഥവാ -273° സെൽസീസ്‌) വരെ. ഈ താപനിലയിൽ ചാലകങ്ങളുടെ രോധം പൂർണ്ണമായി നഷ്ടമാകും, ഊർജ്ജം പൂർണ്ണമായും ചാലകങ്ങളിലൂടെ പ്രവഹിക്കും, എന്നാൽ ഈ താപനില നിലനിർത്തികൊണ്ടുപോകാൻനിലനിർത്തിക്കൊണ്ടുപോകാൻ വളരെ ബുദ്ധിമുട്ടും പണച്ചിലവ്‌ ഏറെയുമാണ്‌.ഏന്നാലിന്ന് പരീക്ഷണശാലക്ക്‌ പുറത്ത്‌ 4.2°കെൽവിൻ താപനിലയിൽ വരെ അതിചാലകത സൃഷ്ടിക്കാൻ കഴിഞ്ഞിട്ടുണ്ട്‌.അതിനായി ഉപകരണങ്ങൾ ചോർച്ചയില്ലാത്ത ദ്രവ[[ഹീലിയം]](ഹീലിയം വാതകം ദ്രാവകാവസ്ഥ പ്രാപിക്കുന്ന താപനിലയാണ്‌ 4.2°കെൽവിൻ) നിറച്ച സംഭരണികളിൽ താഴ്ത്തിയിടേണ്ടതുണ്ട്‌. അതുകൊണ്ടൊക്കെ തന്നെ അതിചാലക ഉപയോഗിക്കുന്ന മേഖലകൾ ഇന്നും ചുരുക്കമാണ്‌. അവ കാന്തികപ്ലവന രീതിയിൽ ചലിക്കുന്ന അതിവേഗ തീവണ്ടി([[ജപ്പാൻ]]), കാന്തിക അനുരണന ബിംബവത്‌കരണ(Magnetic resonance imaging) ഉപകരണങ്ങൾ, അണുസംയോജന ഗവേഷണത്തിനുപയോഗിക്കുന്ന ഉപകരണങ്ങൾ എന്നിവയിലൊക്കെ ഒതുങ്ങി.
ഏന്നാലിന്ന് പരീക്ഷണശാലക്ക്‌ പുറത്ത്‌ 4.2°കെൽവിൻ താപനിലയിൽ വരെ അതിചാലകത സൃഷ്ടിക്കാൻ കഴിഞ്ഞിട്ടുണ്ട്‌.അതിനായി ഉപകരണങ്ങൾ ചോർച്ചയില്ലാത്ത ദ്രവ[[ഹീലിയം]](ഹീലിയം വാതകം ദ്രാവകാവസ്ഥ പ്രാപിക്കുന്ന താപനിലയാണ്‌ 4.2°കെൽവിൻ) നിറച്ച സംഭരണികളിൽ താഴ്ത്തിയിടേണ്ടതുണ്ട്‌. അതുകൊണ്ടൊക്കെ തന്നെ അതിചാലക ഉപയോഗിക്കുന്ന മേഖലകൾ ഇന്നും ചുരുക്കമാണ്‌. അവ കാന്തികപ്ലവന രീതിയിൽ ചലിക്കുന്ന അതിവേഗ തീവണ്ടി([[ജപ്പാൻ]]), കാന്തിക അനുരണന ബിംബവത്‌കരണ(Magnetic resonance imaging) ഉപകരണങ്ങൾ, അണുസംയോജന ഗവേഷണത്തിനുപയോഗിക്കുന്ന ഉപകരണങ്ങൾ എന്നിവയിലൊക്കെ ഒതുങ്ങി.
 
=== അതിചാലകതയുടെ കാരണം ===
Line 37 ⟶ 36:
"പദാർഥത്തിന്റെ വൈദ്യുത ചാലകതയ്ക്ക്‌ നിദാനമായ ഇലക്ട്രോണുകളും, ക്രിസ്റ്റൽ ജാലികയുടെ കമ്പനങ്ങളും തമ്മിലുള്ള പ്രതിക്രിയയാണ്‌ അതിചാലകതയ്ക്കാധാരം." എന്ന്‌ ഈ സിദ്ധാന്തം പറയുന്നു.
 
ഒരു ചാലകത്തിൽ ധാരാളം സ്വതന്ത്ര ഇലക്ട്രോണുകൾ ഉണ്ട്‌. ചാലകം അതിചാലകം ആയി മാറുന്ന സമയത്ത്‌ ഇതിൽ രണ്ടെണ്ണം ചേർന്ന്‌ ഒരു ജോഡിയായി മാറുന്നു. ഇതിന്‌ കൂപ്പർ പെയറുകൾ എന്നു പറയുന്നു. ക്രിസ്റ്റൽ നിരകളുടെ കമ്പനമാണ്‌ ഇവയെ ഒന്നിച്ച്‌ നിർത്തുന്നത്‌. വിപരീത ചാർജുള്ള ഇവയെ വേർപെടുത്താൻകഴിയാത്തവിധംവേർപെടുത്താൻ കഴിയാത്തവിധം ഒന്നിച്ച്‌ നിൽക്കുന്നതിനാൽ ഇവയ്ക്ക്‌ സുഗമമായി വൈദ്യുതിയെ കടത്തിവിടാനാകും. പരസ്പരം കൂട്ടിയിടിച്ചാൽ പോലും ഇവ വേർപെടുന്നില്ല അതിനാൽ ഇലക്ട്രോണുകൾക്കുണ്ടാവുന്ന സഞ്ചാര തടസം പോലും ഇവയ്ക്കനുഭവപ്പെടുകയില്ല. ഇതാണ്‌ അതിചാലകതയ്ക്ക്‌ കാരണം.
 
== വെല്ലുവിളികളും പ്രതീക്ഷയും ==
1990-കളിൽ ശാസ്ത്രം 100°കെൽവിൻ താപനില വരെ പ്രത്യേക മൂലക സംയുക്തങ്ങൾ ഉപയോഗിച്ച്‌ അതിചാലകത സൃഷ്ടിച്ചിട്ടുണ്ട്‌. ദ്രവഹീലിയത്തിനു പകരം [[നൈട്രജൻ|ദ്രവനൈട്രജൻ]](liquid Nitrogen) ഉപയോഗിക്കാമെന്നും കണ്ടെത്തി.
താഴ്ന്ന താപനിലയിൽ അതിചാലകസ്വഭാവം കാണിക്കുന്ന [[ഈയം]], [[നാകം]], രസം മുതലായ മൂലകങ്ങൾ ഉയർന്ന കാന്തികക്ഷേത്രം സൃഷ്ടിക്കാൻ പാകത്തിലുള്ള വൈദ്യുതി കടത്തി വിടുമ്പോൾ അതിചാലക സ്വഭാവം ഉപേക്ഷിക്കും എന്നാൽ പുതിയ സംയുക്തങ്ങൾ ആയ [[നിയോബിയം]], [[ടൈറ്റാനിയം]], എന്നിവയുടെ ഓക്സൈഡുകളുടെ സങ്കരങ്ങൾക്ക്‌ ഈ പ്രശ്നവുമില്ല. അപ്പോൾ താപനില 32°കെൽവിൻ വരെ സൂക്ഷിക്കണമായിരുന്നു, പിന്നീട്‌ കാൾ അലക്സ്‌ മുള്ളർ, പോൾ. ഡബ്ല്യു. ചു മുതലായവരുടെ ശ്രമഫലമായി ഉയർന്ന മർദ്ദത്തിൽ താപനില 52°കെൽവിൻ വരെ ഉയർത്താം എന്നു കണ്ടെത്തി. എന്നാൽ മർദ്ദം അന്തരീക്ഷമർദ്ദത്തിന്റെ ആയിരം ഇരട്ടി ആകുമ്പോൾ സംയുകതങ്ങളുടെസംയുക്തങ്ങളുടെ [[തന്മാത്ര]] ഘടന നശിക്കുന്നതായി കണ്ടെത്തി.
പിന്നീട്‌ [[യിട്രിയം]] എന്ന മൂലകം അടങ്ങിയ സംയുക്തങ്ങൾ ഉപയോഗിച്ചപ്പോൾ താപനില 100°കെൽവിൻ വരെ ആക്കാൻ സാധിച്ചു.
സാധാരണതാപനിലയിൽ അതിചാലകങ്ങളെ ഉണ്ടാക്കി എടുക്കുകയായിരിക്കും അന്തിമലക്ഷ്യം, ട്രാൻസിസ്റ്ററുകൾ ലോകത്തെ മാറ്റിമറിച്ചതു പോലെ അതും ഒരു വഴിത്തിരിവായിരിക്കും. പരീക്ഷണശാലകളിൽ അത്‌ സാധ്യമായെന്നും പറയപ്പെടുന്നു.
 
താപനില കുറയുമ്പോൾ ഒരു ചാലകത്തിന്റെ വൈദ്യുത രോധം പൂജ്യത്തോടടുക്കും. ആ സമയം അവയുടെ ചാലകത്‌ അസാധാരണമാം വിധം വർദ്ധിക്കും. ഈ പ്രതിഭാസമാണ്‌ അതിചാലകത. 1911-ൽ ഡച്ച്‌ ഭൗതികശാസ്ത്രഞ്ജനായഭൗതികശാസ്ത്രജ്ഞനായ കാമർലിങ്ങ്‌ ഓൺസ്‌ ആണ്‌ അതിചാലകത കണ്ടുപിടിച്ചത്‌. ആ സമയത്ത്‌ വളരെയധികം താഴ്‌ന്ന താപനിലയിൽ മാത്രമേ അതിചാലകത സാധ്യമാകുമായിരുന്നുള്ളു എന്നാൽ പിന്നീടുള്ള ഗവേഷണങ്ങൾ ഒയർന്നഉയർന്ന താപനിലയിലും അതിചാലകത സാധ്യമാക്കാം എന്ന്‌ കണ്ടെത്തി. സാധാരണ അന്തരീക്ഷ താപനിലയിലുള്ള അതിചാലകത സാധ്യമായാൽ ഭൗതിക ശസ്ത്രംഭൗതികശാസ്ത്രം കണ്ടിട്ടുള്ളതിൽ വച്ച്‌ വലിയൊരു വിപ്ലവമായിമാറുംവിപ്ലവമായി മാറും അത്‌. കാരണം മനുഷ്യ സമൂഹത്തിന്റെമനുഷ്യസമൂഹത്തിന്റെ സമസ്ത മേഖലകളിലും സ്വാധീനംചെലുത്താൻസ്വാധീനം ചെലുത്താൻ ഇതിനു കഴിയും.
 
== അതിചാലകതയുടെ ഉപയോഗങ്ങൾ ==
=== ഊർജഊർജ്ജ സംരക്ഷണം ===
 
അതിചാലകതയുടെ ഏറ്റവും വലിയ ഒരു ഗുണമാണ്‌ ഊർജഊർജ്ജ സംരക്ഷണം. ഇന്ന്‌ പവർ സ്റ്റേഷനുകളിൽ നിന്ന്‌ അയയ്ക്കുന്ന വൈദ്യുതി മുഴുവനൊന്നും നമുക്ക്‌ വീടുകളിൽ കിട്ടുന്നില്ല. വൈദ്യുതി വഹിച്ചുകൊണ്ടു പോകുന്ന ചാലകങ്ങളുടെ രോധമാണ്‌ ഇതിനുകാരണം. അന്തരീക്ഷ താപനിലയിൽ അതിചാലകങ്ങൾ സാധ്യമായാൽ അയയ്ക്കുന്ന മുഴുവൻ വൈദ്യുതിയും നമുക്ക്‌ ലഭിക്കും. ഇന്നത്തെ നമ്മുടെ ഊർജഊർജ്ജ ദൗർലഭ്യത്തിന്‌ ഇത്‌ വലിയൊരളവ്‌ പരിഹാരമാവും.
 
=== വൈദ്യുതകാന്തങ്ങൾ ===
"https://ml.wikipedia.org/wiki/അതിചാലകത" എന്ന താളിൽനിന്ന് ശേഖരിച്ചത്