42,741
തിരുത്തലുകൾ
(ചെ.) (യന്ത്രം ചേര്ക്കുന്നു: eu:Parabola) |
(ചെ.) (യന്ത്രം ചേര്ക്കുന്നു: pms:Paràbola; cosmetic changes) |
||
{{prettyurl|parabola}}
[[
[[
[[
[[ദ്വിമാനതലം|ദ്വിമാനതലത്തില്]] രചിച്ചിരിക്കുന്ന ഒരുതരം [[വക്രം|വക്രമാണ്]] '''പരാബൊള'''. ഒരു സമതലത്തില് ശയിക്കുന്ന ഒരു രേഖയും , ആ രേഖയിലല്ലാത്ത ഒരു ബിന്ദുവും ഉണ്ടെന്നിരിക്കട്ടെ; ആ രേഖയില് നിന്നും (നിയതരേഖ; Directrix) ബിന്ദുവില് നിന്നും ( കേന്ദ്രം; focus) ഉള്ള അകലം തുല്യമാകത്തക്കവിധം സഞ്ചരിക്കുന്ന മറ്റൊരു ബിന്ദുവിന്റെ സഞ്ചാരപഥത്തെ ( Locus) ആണ് പരാബൊള (Parabola) എന്നു പറയുന്നത്.
ഒരു ഗോളത്തിന്റെ ഗുരുത്വാകര്ഷണത്തിനു വിധേയമായി, ക്ഷേപിക്കപ്പെടുന്ന ഒരു വസ്തുവിന്റെ (എറിയപ്പെടുന്ന ഒരു [[ക്രിക്കറ്റ്|ക്രിക്കറ്റു]]പന്ത്, തോക്കില് നിന്നു പായുന്ന ഒരു വെടിയുണ്ട മുതലായവ) സഞ്ചാരപഥം പരാബോളയാണ്.
== വിശ്ലേഷണജ്യാമിതീസമവാക്യങ്ങള് ==
[[ചതുരനിർദ്ദേശാങ്കവ്യവസ്ഥ]]യിൽ <math>y\,\!</math> അക്ഷത്തിനു സമാന്തരമായതും ശീര്ഷം <math>(h, k)\,\!</math>ഉം ഫോകസ് <math>(h, k + p)\,\!</math>ഉം നിയതരേഖ <math>y = k - p\,\!</math>ഉം <math>p\,\!</math> ദൂരവും ഉള്ള പരാബോളയുടെ സമവാക്യം
:<math> A x^2 + B xy + C y^2 + D x + E y + F = 0 \,</math> ഇപ്രകാരമാണ്.
== ഇതര ജ്യാമിതീയ നിർവചനങ്ങൾ ==
[[
വൃത്തസ്തുപികാവക്രങ്ങളില്, ഏതു ബിന്ദുവില് നിന്നും, കേന്ദ്രത്തിലേക്കും, നിയതരേഖയിലേക്കും ഉള്ള ദൂരങ്ങള് തമ്മിലുള്ള അനുപാതത്തെ വക്രത്തിന്റെ '''ഉത്കേന്ദ്രത''' (Eccentricity) എന്നു വിളിക്കുന്നു. അതായത്, വക്രത്തിലെ ഒരു ബിന്ദുവില് നിന്നും കേന്ദ്രത്തിലേക്കുള്ള അകലം r എന്നും, അതില് നിന്നും നിയതരേഖയിലേക്കുള്ള അകലം s എന്നുമിരിക്കട്ടെ, എങ്കില് -
പരബോളക്ക് പ്രതിഫലന പ്രതിസമതയുള്ള ഒരു [[അക്ഷം]] ഉണ്ട്. ഈ [[അക്ഷം]] പരാബോളയുടെ [[ഫോക്കസ്|ഫോകസിലൂടെ]] കടന്നുപോകുന്നു.നിയതരേഖക്ക് ഇത് [[ലംബം|ലംബവും]] ആണ്. ഈ അക്ഷത്തിന്റേയും പരാബോളയുടേയും സംഗമബിന്ദുവാണ് പരാബോളയുടെ [[ശീർഷം]].
== സമവാക്യങ്ങൾ ==
ശീർഷം (h, k)ഉം ഫോകസും ശീർഷവും തമ്മിലുള്ള ദൂരം pഉം ആയ പരാബോളയുടെ സമവാക്യങ്ങളാണ് താഴേ പ്രസ്താവിക്കുന്നത്.
=== കാർടീഷ്യൻ ===
==== ലംബഅക്ഷത്തിലുള്ള പ്രതിസമത ====
:<math>(x - h)^2 = 4p(y - k) \,</math>
:<math>x(t) = 2pt + h; \ \ y(t) = pt^2 + k \, </math>
==== തിരശ്ചീന അക്ഷത്തിലുള്ള പ്രതിസമത ====
:<math>(y - k)^2 = 4p(x - h) \,</math>
:<math>x(t) = pt^2 + h; \ \ y(t) = 2pt + k \, </math>'''
==== പൊതുവായ പരാബോള ====
പരാബോളയുടെ പൊതുരൂപം
:<math>(Ax+By)^2 + Cx + Dy + E = 0 \,</math> ആണ്
കോണികത്തിന്റെ പൊതുസമവാക്യത്തിൽ നിന്നും നിർവചിച്ചിരിക്കുന്ന പരാബോളയുടെ സമവാക്യം <math>B^2=4AC</math> ആണ്.
=== നാഭിലംബം,അർദ്ധനാഭിലംബം,ധ്രുവീയ നിർദ്ദേശാങ്കങ്ങൾ ===
ധ്രുവീയ നിർദ്ദേശാങ്കത്തിൽ(polar co-ordinates) ഫോകസ് മൂലബിന്ദുവും നിയതരേഖ അക്ഷത്തിനു സമാന്തരവും ആയ പരാബോളയുടെ സമവാക്യം
: <math>r (1 + \cos \theta) = l \,</math> ആണ്.
l അർദ്ധനാഭികേന്ദ്രം(semi-latus rectum) ,അതായത് ഫോകസിൽ നിന്നും പരാബോളയിലേക്കുള്ള ദൂരം ആണ്.നാഭികേന്ദ്രം(latus rectum) ഫോകസിലൂടെ കടന്നുപോകുന്ന അക്ഷത്തിനു ലംബമായ ഞാൺ ആണ്.ഇതിന്റെ നീളം 4l ആണ്.
== ഫോകസിന്റെ അനുമാനം ==
[[
[[
പ്രതിസമത അക്ഷം y-അക്ഷത്തിനു സമാന്തരമായതും ശീർഷം (0,0) ആയതും ആയ ഒരു പരാബോളയുടെ സമവാക്യം
എന്ന സമവാക്യം കൊണ്ടും സൂചിപ്പിക്കം.ഈ സമവാക്യത്തെ തന്നെ മറ്റൊരു രീതിയില്
:<math>y=c-\frac{b^2+1}{4a}</math> ഇങ്ങനേയും എഴുതാം.
== സ്പർശകത്തിന്റെ പ്രതിഫലനസ്വഭാവം ==
പരാബോളയുടെ സ്പർശകത്തിന്റെ ചെരിവ് ആണ്.ഈ രേഖ y-അക്ഷത്തിൽ (0,-y) = (0, - a x²) എന്ന ബിന്ദുവിലും x-അക്ഷത്തിൽ (x/2,0) എന്ന ബിന്ദുവിലും സംഗമിക്കുന്നു.ഈ ബിന്ദുവിനെ G എന്ന് വിളിക്കുന്നു.Gഎന്ന ബിന്ദു F ന്റേയുംQന്റേയും മദ്ധ്യബിന്ദു ആണ്.
:<math> {dy \over dx} = 2 a x = {2 y \over x} </math>:<math> F = (0,f), \quad </math>
''RG'' എന്ന രേഖ.
== അവലംബം ==
Encarta Reference Library Premium 2005
[[no:Parabel]]
[[pl:Parabola (matematyka)]]
[[pms:Paràbola]]
[[pt:Parábola]]
[[ro:Parabolă]]
|
തിരുത്തലുകൾ