"എം.ആർ.ഐ. സ്കാൻ" എന്ന താളിന്റെ പതിപ്പുകൾ തമ്മിലുള്ള വ്യത്യാസം

റ്റാഗ്: 2017 സ്രോതസ്സ് തിരുത്ത്
No edit summary
റ്റാഗ്: 2017 സ്രോതസ്സ് തിരുത്ത്
വരി 14:
'''എം.ആർ.ഐ സ്കാൻ '''('''Magnetic resonance imaging'''/'''മാഗ്നെറ്റിക് റെസൊണൻസ് ഇമേജിങ്''' ('''MRI''')) അഥവാ '''കാന്തിക അനുരണന ചിത്രീകരണം''' എന്നത് ശരീരത്തിലെ ആന്തരാവയവങ്ങളുടെ ഘടനയും പ്രവർത്തനവും പകർത്തിയെടുക്കാനുള്ള ഒരു സ്കാനിംഗ് രീതിയാണ്. മറ്റു സ്കാനിങുകളെപ്പോലെ ആരോഗ്യ പരമായ പ്രശ്നങ്ങളൊന്നും സൃഷ്ടിക്കാത്ത ഒരു സ്കാനിംഗ് രീതിയാണ് ഇത്. ഹാനികരമായേക്കാവുന്ന [[Radiation|വികിരണങ്ങളൊന്നും]] തന്നെ ഇവിടെ ഉപയോഗിക്കുന്നില്ല.<ref name="NHS">{{Cite web|url=https://www.nhs.uk/conditions/mri-scan/|title=MRI scan|publisher=www.nhs.uk}}</ref>
 
[[അർബുദം | ക്യാൻസർ]] പോലെയുള്ള രോഗങ്ങളെ തിരിച്ചറിയാനും കൂടുതൽ കൃത്യതയാർന്ന രോഗനിർണ്ണയം നടത്താനും എം.ആർ.ഐ. സ്കാനിംഗ് അവസരമൊരുക്കുന്നു. അതിശക്തമായ കാന്തികഒരു വലയംകാന്തികമണ്ഡലം സൃഷ്ടിച്ചെടുത്താണ് സ്കാനിങ് നടത്തുന്നത്.<ref name="NIH">{{Cite web|url=https://www.nibib.nih.gov/science-education/science-topics/magnetic-resonance-imaging-mri|title=Magnetic Resonance Imaging (MRI)|publisher=NIH}}</ref><ref name="NHS"/> പേശികൾ, സന്ധികൾ, അസ്ഥികൾ, ഞരമ്പുകൾ, സുഷുമ്‌ന, കശേരുക്കൾ, മൃദുകലകൾ, രക്തവാഹിനികൾ തുടങ്ങി ശരീരത്തിന്റെ മിക്ക ഭാഗങ്ങളുടെയും എം.ആർ.ഐ. പരിശോധന ഇന്ന് സാധ്യമാണ്. ഉന്നതശ്രേണിയിലുള്ളതും കൂടുതൽ കാന്തികശക്തിയുമുള്ള 1.5/3/7 ടെസ്‌ല എം.ആർ.ഐ. മെഷീനുകളിലാണ് ഇതിനുകഴിയുക. തലച്ചോറ്, നട്ടെല്ല്, വയറ്, കഴുത്ത്, വസ്തിപ്രദേശം എന്നിവയുടെ പരിശോധനകൾക്ക് എം.ആർ.ഐ. കൂടുതൽ ഗുണകരമാണ്.<ref name="NIH"/>
 
എം.ആർ.ഐ മെഷീനുകളിൽ ഉണ്ടാകുന്ന ശബ്ദം ചിലർക്ക് അസ്വസ്ഥതയുണ്ടാക്കിയേക്കാം. അതുപോലെ അതിൽ ഒരു നീണ്ട, ഇടുങ്ങിയ വളരെയധികം സമയം കിടക്കേണ്ടതുണ്ട് എന്നതിനാൽ ചിലർക്ക് [[Claustrophobia | ക്‌ളൗസ്‌ട്രോഫോബിയ(Claustrophobia)]] പോലെയുള്ള അസ്വസ്ഥതകൾ ഉണ്ടാക്കിയേക്കാം. ഹൃദയപ്രവർത്തനത്തെ നിയന്ത്രിക്കുന്ന [[പേസ്‌മേക്കർ]], അസ്ഥികളിൽ ശസ്ത്രക്രിയാനന്തരം ഘടിപ്പിക്കുന്ന ഇംപ്ലാന്റുകൾ, ഇൻഫ്യൂഷൻ [[Catheter | കത്തീറ്ററുകൾ]] തുടങ്ങിയവ ഉപയോഗിക്കുന്ന രോഗികളെ എം.ആർ.ഐ. സ്‌കാൻ ചെയ്യുവാൻ പാടില്ല. എം.ആർ.ഐ മെഷീനുകളിൽ ഉപയോഗിയ്ക്കുന്ന ശക്തിയേറിയ കാന്തികമണ്ഡലവും റേഡിയോപൾസുകളും ഈ ഉപകരണങ്ങളുമായി പ്രതിപ്രവർത്തിയ്ക്കുന്നതാണ് ഇതിനുള്ള കാരണം.<ref name="NHS"/> അപകടകരമാണെന്ന് ഇതുവരെ തെളിയിക്കപ്പെട്ടിട്ടില്ലെങ്കിലും ഗർഭിണികളിലും എം.ആർ.ഐ സ്കാൻ പൊതുവേ നടത്താറില്ല.<ref name="NHS"/><ref name="radiologyinfo">{{Cite web|url=https://www.radiologyinfo.org/en/info.cfm?pg=safety-mri-pregnancy|title=MRI Safety During Pregnancy|publisher=radiologyinfo}}</ref><ref>{{Cite book|title=MRI: Basic Principles and Applications|last1=Brown|first1=Mark A.|last2=Semelka|first2=Richard C.|publisher=Wiley Blackwell|year=2010|isbn=978-0-470-50098-9|location=New Jersey|pages=213|url=https://books.google.de/books?id=oYOIHi3YkuMC&pg=PA213&dq=mri+scan+pregnancy&hl=en&sa=X&ved=0ahUKEwi41oTDivPhAhXE2qQKHazkCCUQ6AEINDAC#v=onepage&q=mri%20scan%20pregnancy&f=false}}</ref>
വരി 22:
==ചരിത്രം==
 
അണുകേന്ദ്രങ്ങളുടെ കാന്തികമണ്ഡലവുമായുള്ള പ്രതിപ്രവർത്തനങ്ങളെക്കുറിച്ചുള്ള പഠനങ്ങൾ വളരെക്കാലം മുൻപ് തന്നെ തുടങ്ങിയിരുന്നു. 1950-ൽ [[Erwin Hahn | എർവിൻ ഹാൻ]] ഇതിന്റെ പ്രവർത്തനത്തിന് സഹായകമായ [[Free induction decay | ഫ്രീ ഇൻഡക്ഷൻ ഡീകെ]], [[Spin echo | സ്പിൻ എക്കോ]] എന്നീ രണ്ടു പ്രതിഭാസങ്ങൾ കണ്ടെത്തിയിരുന്നു.<ref name="hahn">{{cite journal| author = Hahn, E.L.| title = Spin echoes| journal = Physical Review| date = 1950| volume = 80| issue = 4| pages = 580–594| doi = 10.1103/PhysRev.80.580|bibcode = 1950PhRv...80..580H }}</ref><ref>{{Cite journal|last=Hahn|first=E. L.|date=1950|title=Nuclear Induction Due to Free Larmor Precession|journal=Physical Review|volume=77|issue=2|pages=297–298|doi=10.1103/physrev.77.297.2|bibcode=1950PhRv...77..297H}}</ref> തുടർന്നുള്ള വർഷങ്ങളിൽ ഹെർമാൻ കാർ, വ്ലാഡിസ്ലാവ് ഇവാനോവ്, ജെയ് സിങ്ങർ തുടങ്ങിയ പല ശാസ്ത്രജ്ഞർ എം.ആർ.ഐ സ്കാനറിന്റെ നിർമ്മാണത്തിനാവശ്യമായ പല ഘടകങ്ങളുടെയും ആശയങ്ങളുടെയും കണ്ടുപിടിത്തങ്ങൾ നടത്തി.<ref>{{cite book |last1=Carr |first1=Herman |title=Free Precession Techniques in Nuclear Magnetic Resonance |type=PhD thesis |publisher=Harvard University |location=Cambridge, MA |date=1952 |oclc=76980558}}{{page needed|date=July 2013}}</ref><ref>{{cite journal |first=Herman Y. |last=Carr |date=July 2004 |title=Field Gradients in Early MRI |journal=Physics Today |volume=57 |issue=7 |doi=10.1063/1.1784322 |bibcode=2004PhT....57g..83C |page=83}}</ref><ref>{{cite encyclopedia | encyclopedia = Encyclopedia of Nuclear Magnetic Resonance | volume = 1 | page = 253 | publisher = Wiley and Sons | location = Hoboken, NJ | date = 1996 }}</ref><ref>{{cite journal|author=MacWilliams B|date=November 2003|title=Russian claims first in magnetic imaging|journal=Nature|volume=426|issue=6965|page=375|bibcode=2003Natur.426..375M|doi=10.1038/426375a|pmid=14647349}}</ref><ref>[https://web.archive.org/web/20050817144026/http://www.inauka.ru/science/article36826 ПРИВЕТ НОБЕЛЮ ОТ ИВАНОВА]</ref><ref>[http://www.findpatent.ru/byauthors/849010/ Patents by Ivan Vladislav]</ref><ref>{{cite journal | author = Singer RJ | title = Blood-flow rates by NMR measurements | journal = Science | volume = 130 | issue = 3389| pages = 1652–1653 | date = 1959 |pmid=17781388| doi = 10.1126/science.130.3389.1652| bibcode =1959Sci...130.1652S }}</ref><ref name="emrf">{{cite web|url=http://www.emrf.org/FAQs%20MRI%20History.html |title=A SHORT HISTORY OF MAGNETIC RESONANCE IMAGING FROM A EUROPEAN POINT OF VIEW |publisher=emrf.org |accessdate=2016-08-08 |deadurl=bot: unknown |archiveurl=https://web.archive.org/web/20070413032705/http://www.emrf.org/FAQs%20MRI%20History.html |archivedate=2007-04-13 |df= }}</ref>
 
1971-ൽ [[Paul Lauterbur|പോൾ ലൗറ്റർബർ]] എന്ന അമേരിക്കൻ ശാസ്ത്രജ്ഞൻ ആണ് ആദ്യ എം.ആർ.ഐ ചിത്രം പ്രസിദ്ധീകരിച്ചത്.<ref name=lauterbur>{{cite journal |author=Lauterbur PC |date=1973 |title=Image Formation by Induced Local Interactions: Examples of Employing Nuclear Magnetic Resonance |journal=[[Nature (journal)|Nature]] |volume=242 |pages=190–1 |doi=10.1038/242190a0 |issue=5394 |bibcode=1973Natur.242..190L}}</ref><ref>{{cite journal |author=Rinck PA |date=2014 |title=The history of MRI |journal=Magnetic Resonance in Medicine |url=http://www.magnetic-resonance.org/sources/Magnetic%20Resonance%2012th%20edition%202018%20Offprint%20History.pdf}}</ref> വെള്ളം നിറച്ച രണ്ടു കുപ്പികളുടെ ചിത്രം അദ്ദേഹം മൂന്നു മാനങ്ങളിലും ഉള്ള [[ഗ്രേഡിയന്റ്| ഗ്രേഡിയന്റുകളും]], തുടർന്നുള്ള ബാക് പ്രോജെക്ഷൻ രീതിയും ഉപയോഗിച്ച് ഉണ്ടാക്കിയെടുത്തു. 1973-ൽ ഇത് നേച്ചർ മാസികയിൽ പ്രത്യക്ഷപ്പെട്ടു. തുടർന്ന് അദ്ദേഹം ജീവനുള്ള ജീവികളുടെ ചിത്രങ്ങൾ ഉണ്ടാക്കിയെടുക്കുകയും 1974 ഒരു എലിയുടെ തൊണ്ടയുടെ ചിത്രം [[Nature (journal)|നേച്ചർ മാസികയിൽ]] പ്രസിദ്ധീകരിപ്പിയ്ക്കുകയും ചെയ്തു. ആദ്യകാലത്തു അദ്ദേഹം ഈ പുതിയ ഇമേജിങ് രീതിയെ ''സോയ്ഗ്മാറ്റോഗ്രാഫി'' എന്നാണ് വിളിച്ചത്.<ref>{{cite journal | vauthors = Rinck PA | journal = Spectroscopy Europe | volume = 20 | issue = 1 | pages = 7 | date = 2008 | title = A short history of magnetic resonance imaging | url = https://www.spectroscopyeurope.com/article/short-history-magnetic-resonance-imaging }}</ref> തുടർന്ന് ഇതിന് എൻ.എം.ആർ. ഇമേജിങ് എന്ന പേര് സിദ്ധിച്ചു. എഴുപതുകളുടെ രണ്ടാംപകുതിയിൽ ലൗറ്റർബറും, [[Peter Mansfield |പീറ്റർ മാൻസ്ഫീൽഡ്]] എന്ന ശാസ്ത്രജ്ഞനും ചേർന്ന് എക്കോ-പ്ലാനർ ഇമേജിങ് ടെക്‌നിക് എന്ന [[MRI sequence | എം.ആർ.ഐ സീക്വെൻസ്]] കണ്ടുപിടിച്ചു.<ref name="Mansfield-EPI">{{cite journal |doi=10.1103/physrevb.12.3618 |title="Diffraction" and microscopy in solids and liquids by NMR |journal=Physical Review B |volume=12 |issue=9 |pages=3618–3634 |year=1975 | vauthors = Mansfield P, Grannell PK }}</ref> ഇവരുടെ കണ്ടുപിടിത്തങ്ങൾക്ക് 2003-ലെ ഫിസിയോളജി, മെഡിസിൻ ശാഖകളിലെ [[നോബൽ സമ്മാനം]] ഇവർക്കു ലഭിച്ചു.<ref name="nobelprize">{{cite web|url=https://www.nobelprize.org/prizes/medicine/2003/summary/ |title=The Nobel Prize in Physiology or Medicine 2003 |publisher=www.nobelprize.org/ |accessdate=2019-05-03}}</ref>
 
==പ്രവർത്തനരീതി ==
[[File:PrecessingProtonMalayalam.png|thumb|[[പുരസ്സരണം|പുരസ്സരണത്തിലുള്ള]] പ്രോട്ടോൺ. കാന്തികമണ്ഡലത്തിന്റെ പ്രഭാവമാണ് പുരസ്സരണത്തിന് കാരണം.]]
[[File:PrecessingProtonsMalayalam.png|thumb|400px|left|ശക്‌തിയേറിയ ഈ കാന്തികമണ്ഡലത്തിൽ കുറെ എണ്ണം പ്രോട്ടോണുകൾ കാന്തികമണ്ഡലത്തിന് നേരെയും കുറെ എണ്ണം എതിരായും നിൽക്കുന്നു. കാന്തികമണ്ഡലത്തിന് നേരെ നിൽക്കുന്ന എണ്ണം എതിരെ നിൽക്കുന്നവയെക്കാൾ അല്പം കൂടുതൽ ആയിരിയ്ക്കും. അധികമായുള്ള ഈ പ്രോട്ടോണുകൾ ഈ മേഖലയ്ക്ക് ഒരു ചെറിയ കാന്തികശക്തി നൽകുന്നു. ചുറ്റുമുള്ള കാന്തികമണ്ഡലവുമായി തട്ടിച്ചു നോക്കുമ്പോൾ ഇത് വളരെ നിസ്സാരമാണെങ്കിലും ഈ കാന്തികപ്രഭാവം അളന്നെടുക്കാൻ സാധിച്ചാൽ ഇവയിലെ പ്രോട്ടോണുകളുടെ എണ്ണത്തിന്റെ ഒരു കണക്ക് ഉണ്ടാക്കിയെടുക്കാൻ സാധിയ്ക്കും.]]
 
മനുഷ്യശരീരത്തിലെ ജലാംശം, കൊഴുപ്പ് എന്നീ ഘടകങ്ങളിൽ ഉള്ള ഹൈഡ്രജൻ ആറ്റങ്ങളുടെ കേന്ദ്രത്തിൽ ഒരു [[പ്രോട്ടോൺ]] ആണുള്ളത്. ശരീരത്തിന്റെ ഒരോ ചെറിയ അംശത്തിലും (ഇതിനെ ഒരു [[Voxel | വോക്സെൽ]] (voxel) എന്ന് വിളിയ്ക്കുന്നു) ഇത്തരം അനേക ദശലക്ഷം പ്രോട്ടോണുകൾ കാണപ്പെടുന്നു. ഈ പ്രോട്ടോണുകൾക്ക് [[Spin (physics) | സ്പിൻ]] എന്ന ഒരു [[Quantum mechanics | ക്വാണ്ടം മെക്കാനിക്കൽ]] സ്വഭാവം ഉണ്ട്(ഇതിനെ ഭ്രമണം എന്ന് വിളിയ്ക്കാമെങ്കിലും ശരിയ്ക്കും നമ്മൾ ഉദ്ദേശിയ്ക്കുന്ന തരം ഭൗതികഭ്രമണമല്ല ഇത്.) ഈ സ്പിൻ'ന്റെ ദിശ മുകളിലേയ്ക്കോ താഴേയ്‌ക്കോ ആകാം. ഇവയുടെ ദിശയ്ക്കനുസൃതമായി അവയ്‌ക്കൊരു [[Magnet | കാന്തികസ്വഭാവം]] ഉണ്ടാകും. അതായത് ഓരോ പ്രോട്ടോണും ഒരു [[Magnet |കാന്തം]] പോലെ പ്രവർത്തിയ്ക്കുന്നു. പൊതുവെ ഒരു വോക്സെലിൽ ഉള്ള പ്രോട്ടോണുകൾ പല ദിശകളിൽ സ്പിൻ ചെയ്യുന്നതിനാൽ അവയുടെ കാന്തികദിശകളും പല വഴിയ്ക്കായിരിയ്ക്കും. അതിനാൽ അവയുടെ കാന്തികസ്വഭാവങ്ങൾ പരസ്പരം ക്യാൻസൽ ചെയ്തു പോകുന്നു. അതിനാൽ ആ വോക്സെലിന് ആകെ നോക്കുമ്പോൾ കാന്തികസ്വഭാവം ഒന്നും കാണില്ല.
 
എന്നാൽ ഒരു ശക്തിയേറിയ കാന്തികമണ്ഡലത്തിൽ സ്കാൻ ചെയ്യേണ്ട ആളെ ആദ്യം കിടത്തുമ്പോൾ അയാളുടെ ശരീരത്തിലെ ഓരോ വോക്സെലുകളിലെയും പ്രോട്ടോൺ-കാന്തങ്ങൾ പുറമെയുള്ള കാന്തികമണ്ഡലത്തിന് സമാന്തരമായി നിലകൊള്ളുന്നു. ഇവയിൽ ഏതാണ്ട് പകുതി എണ്ണം പ്രോട്ടോണുകൾ കാന്തികമണ്ഡലത്തിന്റെ ഉത്തരധ്രുവത്തിന് നേരെയും മറ്റുള്ളവ ദക്ഷിണധ്രുവത്തിന് അഭിമുഖമായും നിലകൊള്ളുന്നു. എന്നാൽ ഇവയുടെ അളവിൽ ഒരു ചെറിയ വ്യത്യാസം കാണുന്നു. അതായത് കാന്തികമണ്ഡലത്തിന്റെ ഒരു ധ്രുവത്തിന് നേരെ വളരെ ചെറിയ എണ്ണം പ്രോട്ടോണുകൾ കൂടുതലായി തിരിഞ്ഞുനിൽക്കും. അതിനാൽ ഈ സമയത്ത് ഓരോ വോക്സെലിനും വളരെ ചെറിയ ഒരു അളവ് കാന്തശക്തി കൈവരുന്നു. ഓരോ വോക്സിലിനുമുള്ള ഈ ചെറിയ കാന്തികശക്തി അവയിലെ പ്രോട്ടോണുകളുടെ എണ്ണത്തിന് ആനുപാതികമായിരിയ്ക്കും. ഈ കാന്തികശക്തി എത്രയുണ്ട് എന്ന് അളന്നെടുത്താൽ ആ വോക്സെലിലെ പ്രോട്ടോണുകളുടെ എണ്ണവും തൽഫലമായി അവയിലെ ജലാംശം, കൊഴുപ്പ് എന്നിവയുടെ അളവും അളന്നെടുക്കാംകണ്ടുപിടിയ്ക്കാം.
 
ഇത് അളന്നെടുക്കാനായി ഒരു വശത്തേയ്ക്ക് തിരിഞ്ഞു നിൽക്കുന്ന അധികമുള്ള ഈ പ്രോട്ടോണുകളെ പുറത്തു നിന്നും കൂടുതൽ ഊർജം നൽകി മറുവശത്തേയ്ക്ക് തിരിയ്ക്കുന്നു. ഈ കൂടുതലായുള്ള ഊർജം അവയിൽ ശേഖരിച്ചു വെച്ചാണ് അവ മറുവശത്തേയ്ക്ക് തിരിയുന്നത്. പുറത്തുനിന്നുള്ള ഈ ഊർജം നിൽക്കുമ്പോൾ അവ സംഭരിച്ചുവെച്ചിട്ടുള്ള ഊർജം പുറത്തേയ്ക്ക് വിടുകയും തിരിയെ പഴയ ദിശയിലേക്ക് തന്നെ തിരിഞ്ഞു നിൽക്കുകയും ചെയ്യുന്നു. ഈ പുറത്തുവരുന്ന ഊർജത്തിന്റെ അളവ് അളന്നെടുത്ത് ഓരോ വോക്സെലിലും എത്ര പ്രോട്ടോണുകൾ ഉണ്ടെന്നു കണക്കാക്കാവുന്നതാണ്.
വരി 45:
[[File:T1t2PD.jpg|thumb|PD വെയ്റ്റഡ്, <math>T_1</math> വെയ്റ്റഡ്, <math>T_2</math> വെയ്റ്റഡ് ഇമേജുകളുടെ ഉദാഹരണങ്ങൾ]]
[[File:Proton spin MRI.webm|thumb|left|300px| B<sub>0</sub> എന്ന കാന്തികമണ്ഡലത്തിൽ ഓരോ പ്രോട്ടോണിന്റെ പുരസ്സരണം. <math>T_1</math>, <math>T_2</math> റിലാക്സേഷൻ സമയങ്ങളും ചിത്രീകരിച്ചിരിയ്ക്കുന്നു.]]
മുകളിൽ വിവരിച്ച പ്രകാരം ഇത്തരം ഇമേജുകൾ ആയിരുന്നു ഒരു കാലത്ത് അടിസ്ഥാന എം.ആർ ഇമേജുകൾ. ഓരോ വോക്സെലിലുമുള്ള പ്രോട്ടോണുകളുടെ എണ്ണത്തിന് ആനുപാതികമായാണ് ഈ ഇമേജുകളിലെ ഓരോ [[പിക്സൽ | പിക്സലിന്റേയും]] കറുപ്പ്/വെളുപ്പ്/ചാരനിറം(ഗ്രേ-സ്കെയിൽ, സാധാരണയായി 0 മുതൽ 255 വരെയുള്ള വിലകളായി രേഖപ്പെടുത്തുന്നു. സാധാരണയായി 0 എന്നത് കറുപ്പും 255 എന്നത് വെളുപ്പും ഇടയിലുള്ള വിലകൾ ചാരനിറത്തിന്റെ പല ഷേഡുകളും ആയി സ്‌ക്രീനിൽ കാണുന്നു). പൊതുവേ ശരീരത്തിലെ വോക്‌സ്‌ലുകളിലെ പ്രോട്ടോണുകളുടെ എണ്ണത്തിൽ അത്രയ്ക്കധികം വ്യത്യാസം കാണപ്പെടാത്തതിനാൽ ഇത്തരം ഇമേജുകളുടെ [[Contrast (vision) | കോൺട്രാസ്റ്റ്]] അത്ര നന്നായിരിയ്ക്കില്ല. എന്നിരുന്നാലും കാൽമുട്ടിന്റെയും മറ്റും പഠനത്തിന് ഇത്തരം ഇമേജുകൾ ഉപയോഗിയ്ക്കാറുണ്ട്.<ref>{{cite book |last1=McRobbie |first1=Donald W.|first2 = Elizabeth A. |last2=Moore|first3 = Martin J. |last3=Graves |first4 = Martin R. |last4=Prince | title=MRI from Picture to Proton |publisher=Cambridge University Press |location=Cambridge, UK|date=2003|url=https://books.google.de/books?id=gfuO6NK_InkC|pages=35|quote="Of course we have been making some very sweeping statements about contrast, and PD scans do have some useful clinical applications; for example, in the knee you can distinguish articular cartilage from the cortical bone and menisci "}}</ref>
 
===<math>T_1</math> വെയ്റ്റഡ്===
[[File:T1RelaxationMalayalam.gif|thumb|500px|<math>T_1</math> റിലാക്സേഷൻ പ്രക്രിയ. റേഡിയോ പൾസ് നിറുത്തിയതിന് ശേഷം ആക്സ്യൽ ദിശയിലുള്ള കാന്തികത പൂജ്യത്തിൽ നിന്നും മാക്സിമം വിലയിലേയ്ക്ക് എക്സ്പൊണെൻഷ്യൽ ആയി വളരുന്നു. വിവിധ ശരീരകലകൾക്ക് ഈ വളർച്ചയുടെ വേഗത വ്യത്യസ്തമായിരിയ്ക്കും. ഈ വ്യത്യാസം മൂലം അവയുടെ ആക്സ്യൽ ദിശയിലുള്ള കാന്തികത അളന്നു രേഖപ്പെടുത്തിയാൽ അധികം കോൺട്രാസ്റ്റ് ഉള്ള ഒരു ഇമേജ് ലഭിയ്ക്കുന്നു.]]
[[File:T1 relaxation.jpg|thumb | <math>T_1</math> റിലാക്സേഷൻ]]
സ്കാനറിലെ പ്രധാനപ്പെട്ടപ്രധാന കാന്തികമണ്ഡലത്തിന്റ ദിശ അതിൽ കിടക്കുന്ന രോഗിയുടെ തല/പാദം ദിശയ്ക്ക് സമാന്തരമാണ്. (അതായത് ടേബിളിനു സമന്തരംസമാന്തരം). അതിനാൽ ശരീരത്തിലെ പ്രോട്ടോണുകളും ഈ ദിശയിൽ തിരഞ്ഞു സ്ഥിതി ചെയ്യുന്നു. ഒന്നുകിൽ അതിന് നേരെയോ അല്ലെങ്കിൽ എതിരായോ. അതിനു ലംബമായി പ്രോട്ടോണുകളൊന്നും കാണില്ല. ഈ ദിശയെ [[Anatomical terms of location|ആക്സ്യൽ ദിശ]] എന്ന് വിളിയ്ക്കുന്നു. ഇതിന് ലംബമായുള്ള പ്രതലത്തെ [[അക്ഷതലം|ട്രാൻസ്വേഴ്‌സൽ പ്രതലം]] എന്ന് വിളിയ്ക്കുന്നു. മുകളിലെ വിവരണത്തിൽ ആക്സ്യൽ ദിശയിൽ നിൽക്കുന്ന പ്രോട്ടോണുകളെ (കൃത്യമായി പറഞ്ഞാൽ, പ്രോട്ടോണുകളുടെ സ്പിന്നുകളെ) റേഡിയോ ഊർജം ഉപയോഗിച്ച് ട്രാൻസ്വേഴ്‌സൽ പ്രതലത്തിലേയ്ക്ക് ചെരിച്ചു നിർത്തിയാണ് എം.ആർ സിഗ്നൽ ഉണ്ടാക്കിയെടുക്കുന്നത് എന്ന് കണ്ടു. ഇങ്ങനെ ട്രാൻസ്വേഴ്‌സൽ പ്രതലത്തിൽ ഉള്ള പ്രോട്ടോണുകളുടെ കാന്തികമണ്ഡലം (അഥവാ സ്പിൻ ദിശ) പുറത്തുനിന്നുള്ള റേഡിയോ ഊർജം നിലയ്ക്കുമ്പോൾ തിരികെ ആക്സ്യൽ ദിശയിലേക്ക് തിരിച്ചു പോകും. അവ ട്രാൻസ്വേഴ്‌സൽ പ്രതലത്തിൽ നിൽക്കുമ്പോൾ ട്രാൻസ്വേഴ്‌സൽ പ്രതലത്തിലുള്ള അവയുടെ കാന്തികപ്രഭാവം ഏറ്റവും കൂടുതലും, ആക്സ്യൽ ദിശയിലുള്ള കാന്തിക പ്രഭാവം ഏറ്റവും കുറവും (പൂജ്യം) ആയിരിയ്ക്കും. എന്നാൽ അവ ആക്സ്യൽ ദിശയിലേക്ക് തിരിച്ചു പോകുമ്പോൾ ആക്സ്യൽ ദിശയിലുള്ള അവയുടെ കാന്തികപ്രഭാവം ക്രമേണ കൂടിവരും. [[എക്സ്പോണെൻഷ്യൽ വളർച്ച | എക്സ്പൊണെൻഷ്യൽ]] ആയിട്ടാണ് ഇത് കൂടുന്നത്. ഇങ്ങനെ കൂടി അത് തുടക്കത്തിലുള്ള അവസ്ഥയിൽ എത്തും (പൂർണമായും ആക്സ്യൽ ദിശയിൽ) (<math>M_z</math>).
 
ഇങ്ങനെ ട്രാൻസ്വേഴ്‌സൽ പ്രതലത്തിൽ നിന്നും ആക്സ്യൽ ദിശയിലേക്കുള്ള അവയുടെ കാന്തികപ്രഭാവത്തിന്റെ വളർച്ചയെ <math>T_1</math> റിലാക്സേഷൻ എന്ന് വിളിയ്ക്കുന്നു. ഇതിനു വേണ്ട സമയത്തെ <math>T_1</math> എന്ന പ്രതീകം കൊണ്ട് സൂചിപ്പിയ്ക്കുന്നു. ശരീരത്തിലെ ഓരോ തരം ഘടകങ്ങളിൽ ഉള്ള പ്രോട്ടോണുകൾക്കും ഈ സമയം വ്യത്യസ്തമായിരിയ്ക്കും. ജലം, കൊഴുപ്പ്, അസ്ഥി തുടങ്ങിയ ഓരോ ഭാഗത്തെയും പ്രോട്ടോണുകൾ വ്യത്യസ്ത വേഗതയിൽ ആണ് പൂർവാവസ്ഥ കൈവരിയ്ക്കുക. അതായത് ഈ സമയത്ത് അവയുടെ അവസ്ഥയുടെ ഒരു വിതരണം എടുത്താൽ വ്യത്യസ്ത ശരീരഘടകങ്ങൾ തമ്മിൽ നല്ല വ്യത്യാസമുള്ള (അഥവാ ഉയർന്ന കോൺസ്ട്രാസ്റ്റ് ഉള്ള) ഇമേജുകൾ ഉണ്ടാക്കി എടുക്കാൻ സാധിയ്ക്കും. ഇത്തരം ഇമേജുകളെ <math>T_1</math> വെയ്റ്റഡ് ഇമേജുകൾ എന്നു വിളിയ്ക്കുന്നു. ഇത്തരം ഇമേജുകളിൽ ജലം, സെറിബ്രൽ സ്പൈൻ ഫ്ലൂയിഡ് മുതലായ ദ്രാവകഘടകങ്ങൾ വളരെ കറുത്ത നിറത്തിലും കൊഴുപ്പ് അടങ്ങിയ ഭാഗങ്ങൾ താരതമ്യേന വെളുത്ത നിറത്തിലും കാണും. ആന്തരികാവയവങ്ങളുടെ അനാട്ടമി(ഘടന) മനസ്സിലാക്കാനാണ് ഇത്തരം ഇമേജുകൾ കൂടുതലായും ഉപയോഗിയ്ക്കുന്നത്.<ref>{{cite book |last1=McRobbie |first1=Donald W.|first2 = Elizabeth A. |last2=Moore|first3 = Martin J. |last3=Graves |first4 = Martin R. |last4=Prince | title=MRI from Picture to Proton |publisher=Cambridge University Press |location=Cambridge, UK|date=2003|url=https://books.google.de/books?id=gfuO6NK_InkC|pages=32|quote="They are often known as ‘anatomy scans’, as they show most clearly the boundaries between different tissues"}}</ref>
വരി 58:
[[File:Head MRI, sagittal plane, T₂ weighted.webm | thumb| left| തലയുടെ <math>T_2</math> വെയ്റ്റഡ് എം.ആർ ഇമേജിന്റെ അനിമേഷൻ]]
[[File:T2RelaxationMalayalam.gif|thumb|500px|<math>T_2</math> റിലാക്സേഷൻ. തുടക്കത്തിൽ വിവിധ ഫേസുകളിൽ പുരസ്സരണം ചെയ്യുന്ന പ്രോട്ടോണുകളുടെ ആകെ ട്രാൻസ്വേഴ്‌സൽ കാന്തികത പൂജ്യം ആണ്. എന്നാൽ റേഡിയോ പൾസ് അപ്ലൈ ചെയ്യുന്നതോടെ ഇവ ട്രാൻസ്വേഴ്‌സൽ പ്രതലത്തിലേക്ക് ചെരിയുന്നതിനോടൊപ്പം അവയുടെ ഫേസുകൾ എല്ലാം തുല്യമാകുന്നു. അതായത് അവ ഒന്നുചേർന്നാണ് പിന്നീട് പുരസ്സരണം ചെയ്യുന്നത്. ഇതേ സമയം അവയുടെ ആകെ ട്രാൻസ്വേഴ്‌സൽ കാന്തികത ഏറ്റവും കൂടുതൽ ഉള്ള വിലയിലേയ്ക്ക് എത്തിച്ചേരുന്നു. എന്നാൽ റേഡിയോ പൾസ് നിലയ്ക്കുമ്പോൾ അവയുടെ ഫേസുകൾ പതിയെ പഴയ പോലെത്തന്നെ ആയിത്തീരുന്നു. അതിനാൽ അവയുടെ ആകെയുള്ള കാന്തികത കുറഞ്ഞു കുറഞ്ഞു പൂജ്യം ആയിത്തീരുന്നു.]]
മുകളിലെ വിവരണത്തിൽ വ്യക്തമായി പ്രതിപാദിയ്ക്കാത്ത ഒരു പ്രതിഭാസം കൂടി ശരീരത്തിലെ പ്രോട്ടോണുകൾ കാണിയ്ക്കുന്നുണ്ട്. ട്രാൻസ്വേഴ്‌സൽ പ്രതലത്തിലെ ഇവയുടെ കാന്തികപ്രഭാവവുമായി ബന്ധപ്പെട്ട ഒരു പ്രതിഭാസമാണിത്. <math>T_1</math> റിലാക്സേഷന്റെ വിവരണത്തിൽ ഒരു വോക്സെലിന്റെ ആകെ കാന്തികപ്രഭാവത്തിനെ റേഡിയോ പൾസ്‌ ഉപയോഗിച്ച് ട്രാൻസ്വേഴ്‌സൽ പ്രതലത്തിലേയ്ക്ക് പൂർണമായും ചെരിയ്ക്കുന്ന ഒരു പടി ഉണ്ടെന്നു കണ്ടല്ലോ. എന്നാൽ ഒരു വോക്സെലിന്റെ ആകെ കാന്തികപ്രഭാവം ചുറ്റുമുള്ള കാന്തികമണ്ഡലത്തിന് നേരെ തിരിഞ്ഞു നിൽക്കുന്ന വളരെ കുറച്ചു എണ്ണം അധിക പ്രോട്ടോണുകളുടെ കാന്തികപ്രഭാവത്തിൽ നിന്നും ഉണ്ടായതാണെന്നും കണ്ടു. സ്പിൻ അച്ചുതണ്ടിനു ചുറ്റും പുരസ്സരണം നടത്തുന്ന ഈ പ്രോട്ടോണുകൾ തുടക്കത്തിൽ വിവിധ [[Phase (waves)|ഫേസുകളിൽ]] ആയാണ് ഈ പുരസ്സരണം നടത്തുന്നത്. അതായത് പുരസ്സരണ വൃത്തത്തിന് മുകളിൽ നിന്ന് നോക്കിയാൽ ഇവ ഒരേ സമയം ഈ വൃത്തത്തിന്റെ പല ഭാഗങ്ങളിലായി കാണാം. ഈ കാരണത്താൽ ട്രാൻസ്വേഴ്‌സൽ പ്രതലത്തിലെ അവയുടെ കാന്തികത പല ദിശകളിലായി ചിതറിക്കിടക്കുകയും തന്മൂലം വോക്സെലിന്റെ ആകെ കാന്തികത പൂജ്യം ആയിരിയ്ക്കുകയും ചെയ്യും
 
എന്നാൽ റേഡിയോ പൾസ് പുറപ്പെടുവിയ്ക്കുമ്പോൾ ഇവ എല്ലാം ഒരുമിച്ച് ട്രാൻസ്വേഴ്‌സൽ പ്രതലത്തിലേക്ക് ചെരിയുന്നതിനോടൊപ്പം ഇവയുടെ ഫേസുകൾ എല്ലാം ഒരുമിച്ച് ചേരുന്നു. അതായത് ഇപ്പോൾ ഇവ പുരസ്സരണ വൃത്തത്തിൽ ഒരുമിച്ചുകൂടിയായിട്ടാണ് പുരസ്സരണം നടത്തുക. അതിനാൽ അവയുടെ ട്രാൻസ്വേഴ്‌സൽ പ്രതലത്തിലെ ആകെ കാന്തികത (<math>{M_x}_y</math>) ഓരോ പ്രോട്ടോണുകളുടെയും വ്യക്തിഗത ട്രാൻസ്വേഴ്‌സൽ കാന്തികതകളുടെ തുകയായിരിയ്ക്കും. എന്നാൽ റേഡിയോ പൾസ് നിലയ്ക്കുന്നതോടെ ഇവ ആക്സ്യൽ ദിശയിലേക്ക് തിരിച്ചു പോകുന്നതോടൊപ്പം തന്നെ പഴയപടി വ്യത്യസ്ത ഫേസുകളിൽ എത്തിച്ചേരുകയും ചെയ്യും.<ref name="MIT_MR">{{cite web|url=http://web.mit.edu/hst.583/www/course2001/LECTURES/physics_1_notes.pdf |title=Basic Principles of Magnetic Resonance |publisher=MIT |accessdate=2019-05-04}}</ref> അതായത് പുരസ്സരണവൃത്തത്തിൽ ഒന്നിച്ചു പുരസ്സരണം നടത്തിയിരുന്ന ഇവ പല വേഗതയിലായി ഫേസ് നഷ്ടപ്പെട്ട് പുരസ്സരണവൃത്തത്തിന്റെ വിവിധ ഭാഗങ്ങളിൽ എത്തിച്ചേരുന്നു. ഇതിനാൽ ഇവയുടെ ട്രാൻസ്വേഴ്‌സൽ കാന്തികതകൾ പല ദിശയിൽ ആയിത്തീരുകയും അവ തമ്മിൽ കൂട്ടി കിട്ടുന്ന ആകെ ട്രാൻസ്വേഴ്‌സൽ കാന്തികത പൂജ്യം ആയിത്തീരുകയും ചെയ്യും. ഇങ്ങനെ ട്രാൻസ്വേഴ്‌സൽ കാന്തികത മാക്സിമം വിലയിൽ നിന്നും (റേഡിയോ പൾസ് നിറുത്തിയ നിമിഷം) ക്രമേണ പൂജ്യം ആയിത്തീരുന്നു പ്രക്രിയയാണ് <math>T_2</math> റിലാക്സേഷൻ. ഇതും എക്സ്പോണെൻഷ്യൽ വേഗതയിലാണ് നടക്കുക. ഇതിന് വേണ്ട സമയത്തെ <math>T_2</math> എന്ന് രേഖപ്പെടുത്തുന്നു.
 
<math>T_1</math> സമയവുമായി തട്ടിച്ചു നോക്കുമ്പോൾ <math>T_2</math> സമയം വളരെ കുറവാണ്. അതായത് ട്രാൻസ്വേഴ്‌സൽ പ്രതലത്തിലെ കാന്തികത വളരെ പെട്ടെന്ന് ഇല്ലാതായി തീരുന്നു. ശരീരത്തിലെ വിവിധ ടിഷ്യുകളിലെ പ്രോട്ടോണുകൾ വിവിധ <math>T_2</math> സമയങ്ങളിലാണ് <math>{M_x}_y</math> കാന്തികത നഷ്ടപ്പെടുത്തുന്നത്. തൽഫലമായി റേഡിയോ പൾസ് നിറുത്തിയ ശേഷം ഇവയുടെ വിതരണത്തിന്റെ ഒരു ഇമേജ് എടുക്കുകയാണെങ്കിൽ ഇത് മറ്റൊരു തരം ജൈവ വിവരം ആണ് ഈ ഇമേജുകളിൽ കാണാൻ കഴിയുക. ജലാംശം, സെറിബ്രൽ സ്പൈൻ ഫ്ലൂയിഡ് തുടങ്ങിയവ വെളുത്ത നിറത്തിലും കൊഴുപ്പ് തുടങ്ങിയവ ചാരനിറത്തിലും കാണാൻ കഴിയും.<ref name="Harward_MR">{{cite web|url=http://www.med.harvard.edu/AANLIB/basicsMR.html |title=Basic proton MR imaging |publisher=harvard medical school|accessdate=2019-05-04}}</ref> ഇത്തരം ഇമേജുകളെ <math>T_2</math> വെയ്റ്റഡ് എന്ന് വിളിയ്ക്കുന്നു. <math>T_1</math> ഇമേജുകൾ ആന്തരികാവയവങ്ങളുടെ ഘടന മനസ്സിലാക്കാനാണ് ഉപയോഗിയ്ക്കുന്നത് എന്ന് കണ്ടല്ലോ. <math>T_2</math> ഇമേജുകൾ ശരീരത്തിലെ ആന്തരികക്ഷതങ്ങളും മറ്റു പാത്തോളജിക്കൽ വിവരങ്ങളും കണ്ടെത്താനാണ് ഉപയോഗിയ്ക്കുന്നത്.<ref>{{cite book |last1=McRobbie |first1=Donald W.|first2 = Elizabeth A. |last2=Moore|first3 = Martin J. |last3=Graves |first4 = Martin R. |last4=Prince | title=MRI from Picture to Proton |publisher=Cambridge University Press |location=Cambridge, UK|date=2003|url=https://books.google.de/books?id=gfuO6NK_InkC|pages=33|quote=" On these scans fluids have the highest intensity, and water- and fat-based tissues are mid-grey. T2 images are often thought of as ‘pathology’ scans because collections of abnormal fluid are bright against the darker normal tissue. So for example the meniscal tear in the knee shows up well because the synovial fluid in the tear is brighter than the cartilage"}}</ref><ref name="ChavhanBabyn2009">{{cite journal|last1=Chavhan|first1=Govind B.|last2=Babyn|first2=Paul S.|last3=Thomas|first3=Bejoy|last4=Shroff|first4=Manohar M.|last5=Haacke|first5=E. Mark|title=Principles, Techniques, and Applications of T2*-based MR Imaging and Its Special Applications|journal=RadioGraphics|volume=29|issue=5|year=2009|pages=1433–1449|issn=0271-5333|doi=10.1148/rg.295095034|pmid=19755604|pmc=2799958}}</ref>
വരി 117:
===ഗ്രേഡിയൻറ്===
[[File:ZGradient.jpg | thumb | കാന്തികമണ്ഡലത്തിൽ ഗ്രേഡിയന്റ് കൊണ്ടുവന്നപ്പോൾ (ആക്സ്യൽ ദിശയിൽ). കാന്തികമണ്ഡലത്തിന്റെ ശക്തി തലഭാഗത്ത് കൂടുതലും പാദത്തിന്റെ ഭാഗത്തു കുറവുമാണ്.]]
ശരീരത്തിലെ ഓരോ ഭാഗത്തുമുള്ള പ്രോട്ടോണുകളെ പടിപടിയായി മാത്രമേ ഉത്തേജിപ്പിയ്ക്കാൻ പാടുള്ളൂ. അല്ലാത്തപക്ഷം തിരിച്ചു വരുന്ന റേഡിയോ ഊർജം എവിടെ നിന്നാണെന്ന് കൃത്യമായി കണ്ടുപിടിയ്ക്കാൻ സാധ്യമല്ല. ഇതിനായി സ്കാൻ ചെയ്യേണ്ട ഭാഗത്തെ പല സ്ലൈസുകൾ ആയി സങ്കൽപ്പിച്ച് ഓരോ സ്ലൈസുകൾക്കും ഓരോവ്യത്യസ്ത പുരസ്സരണ ആവൃത്തിയിലുള്ള റേഡിയോ പൾസുകൾ പുറപ്പെടുവിയ്ക്കുന്നു. പ്രോട്ടോണുകളുടെ പുരസ്സരണ ആവൃത്തി അവ സ്ഥിതി ചെയ്യുന്ന കാന്തികമണ്ഡലത്തിന്റെ ശക്തിയെ ആശ്രയിച്ചിരിയ്ക്കുന്നു.<ref>{{cite book |last1=McRobbie |first1=Donald W.|first2 = Elizabeth A. |last2=Moore|first3 = Martin J. |last3=Graves |first4 = Martin R. |last4=Prince | title=MRI from Picture to Proton |publisher=Cambridge University Press |location=Cambridge, UK|date=2003|url=https://books.google.de/books?id=gfuO6NK_InkC|pages=110|quote="In a simple picture we can think of the spins as rotating at the Larmor or resonance frequency which is also the frequency of the MR signal given approximately by the equation Frequency = 42 X magnetic field where frequency is in megahertz (MHz) and magnetic field is in tesla (T). "}}</ref> എം.ആർ.ഐ സ്കാനറിലെ കാന്തികമണ്ഡലത്തിന്റെ ശക്തി എല്ലായിടത്തും ഒന്ന് തന്നെയായതിനാൽ എല്ലാ പ്രോട്ടോണുകൾക്കും ഒരേ പുരസ്സരണ ആവൃത്തി തന്നെയായിരിയ്ക്കും. ഇതിനെ മറികടക്കാനായിമറികടന്ന്, ശരീരത്തിന്റെ ഓരോ സ്ലൈസുകൾ വരുന്ന സ്ഥലത്ത് വ്യത്യസ്ത കാന്തികശക്തി വരുത്താനായി കാന്തത്തിന്റെ സ്വാഭാവികമണ്ഡലത്തിൽ മറ്റൊരു കാന്തം ഉപയോഗിച്ച് ഒരു [[ഗ്രേഡിയന്റ്]] കൊണ്ടുവരുന്നു. ഈ അവസ്ഥയിൽ ശരീരത്തിന്റെ സ്കാൻ ചെയ്യപ്പെടുന്ന ഭാഗത്തിന്റെ ഒരറ്റത്ത് ഏറ്റവും കൂടുതൽ കാന്തികശക്തിയും മറുവശത്ത് ഏറ്റവും കുറഞ്ഞ കാന്തികശക്തിയും ആയിരിയ്ക്കും. ഇടയിലുള്ള ഓരോ സ്ലൈസുകൾ സ്ഥിതിചെയ്യുന്ന ഭാഗങ്ങളിൽ ക്രമേണ കുറഞ്ഞു വരുന്ന തരത്തിലുള്ള കാന്തികമണ്ഡലം ഉണ്ടാക്കിയെടുക്കുന്നു(ഈ അവസ്ഥയിൽ കാന്തികമണ്ഡലത്തിന്റെ ശക്തി ഒരു കുന്നിന്റെ ഉയരം എന്ന പോലെ ഇരിയ്ക്കും). ഇതുപോലെ തന്നെ ഒരേ സ്‌ലൈസിനുള്ളിൽ തന്നെ ഓരോ വരിയിലും നിരയിലും(അതായത് ഓരോ വോക്സെലിലും) വ്യത്യസ്ത കാന്തികശക്തി ഉണ്ടെങ്കിലേ വരുന്ന റേഡിയോ ഊർജം കൃത്യമായി അതാതിന്റെ സ്ഥാനത്ത് വെയ്ക്കാൻ സാധിയ്ക്കൂ. ചുരുക്കത്തിൽ പറഞ്ഞാൽ ഇങ്ങനെ റേഡിയോ ഊർജത്തിന്റെ സ്ഥാനം വ്യക്തമായി കണ്ടെത്താൻ മൂന്നു ദിശയിലും വ്യത്യസ്ത ഗ്രേഡിയന്റുകൾ ഉപയോഗിച്ച് കാന്തികമണ്ഡലത്തിന്റെ ശക്തി വ്യത്യാസപ്പെടുത്തേണ്ടതുണ്ട്.<ref>{{cite book |last1=McRobbie |first1=Donald W.|first2 = Elizabeth A. |last2=Moore|first3 = Martin J. |last3=Graves |first4 = Martin R. |last4=Prince | title=MRI from Picture to Proton |publisher=Cambridge University Press |location=Cambridge, UK|date=2003|url=https://books.google.de/books?id=gfuO6NK_InkC|pages=110|quote="Three sets of gradient coils, Gx , Gy and Gz , are included in the MR system."}}</ref>
 
===രോഗിയെ കിടത്തേണ്ട ടേബിൾ===
"https://ml.wikipedia.org/wiki/എം.ആർ.ഐ._സ്കാൻ" എന്ന താളിൽനിന്ന് ശേഖരിച്ചത്