"എം.ആർ.ഐ. സ്കാൻ" എന്ന താളിന്റെ പതിപ്പുകൾ തമ്മിലുള്ള വ്യത്യാസം

No edit summary
റ്റാഗ്: 2017 സ്രോതസ്സ് തിരുത്ത്
No edit summary
റ്റാഗ്: 2017 സ്രോതസ്സ് തിരുത്ത്
വരി 49:
===<math>T_1</math> വെയ്റ്റഡ്===
[[File:T1RelaxationMalayalam.gif|thumb|400px|<math>T_1</math> റിലാക്സേഷൻ പ്രക്രിയ. റേഡിയോ പൾസ് നിറുത്തിയതിന് ശേഷം ആക്സ്യൽ ദിശയിലുള്ള കാന്തികത പൂജ്യത്തിൽ നിന്നും മാക്സിമം വിലയിലേയ്ക്ക് എക്സ്പൊണെൻഷ്യൽ ആയി വളരുന്നു. വിവിധ ശരീരകലകൾക്ക് ഈ വളർച്ചയുടെ വേഗത വ്യത്യസ്തമായിരിയ്ക്കും. ഈ വ്യത്യാസം മൂലം അവയുടെ ആക്സ്യൽ ദിശയിലുള്ള കാന്തികത അളന്നു രേഖപ്പെടുത്തിയാൽ അധികം കോൺട്രാസ്റ്റ് ഉള്ള ഒരു ഇമേജ് ലഭിയ്ക്കുന്നു.]]
[[File:T1 relaxation.jpg|thumb | <math>T_1</math> റിലാക്സേഷൻ]]
സ്കാനറിലെ പ്രധാനപ്പെട്ട കാന്തികമണ്ഡലത്തിന്റ ദിശ അതിൽ കിടക്കുന്ന രോഗിയുടെ തല/പാദം ദിശയ്ക്ക് സമാന്തരമാണ്. (അതായത് ടേബിളിനു സമന്തരം). അതിനാൽ ശരീരത്തിലെ പ്രോട്ടോണുകളും ഈ ദിശയിൽ തിരഞ്ഞു സ്ഥിതി ചെയ്യുന്നു. ഒന്നുകിൽ അതിന് നേരെയോ അല്ലെങ്കിൽ എതിരായോ. അതിനു ലംബമായി പ്രോട്ടോണുകളൊന്നും കാണില്ല. ഈ ദിശയെ ആക്സ്യൽ ദിശ എന്ന് വിളിയ്ക്കുന്നു. ഇതിന് ലംബമായുള്ള പ്രതലത്തെ ട്രാൻസ്വേഴ്‌സൽ പ്രതലം എന്ന് വിളിയ്ക്കുന്നു. മുകളിലെ വിവരണത്തിൽ ആക്സ്യൽ ദിശയിൽ നിൽക്കുന്ന പ്രോട്ടോണുകളെ (കൃത്യമായി പറഞ്ഞാൽ, പ്രോട്ടോണുകളുടെ സ്പിന്നുകളെ) റേഡിയോ ഊർജം ഉപയോഗിച്ച് ട്രാൻസ്വേഴ്‌സൽ പ്രതലത്തിലേയ്ക്ക് ചെരിച്ചു നിർത്തിയാണ് എം.ആർ സിഗ്നൽ ഉണ്ടാക്കിയെടുക്കുന്നത് എന്ന് കണ്ടു. ഇങ്ങനെ ട്രാൻസ്വേഴ്‌സൽ പ്രതലത്തിൽ ഉള്ള പ്രോട്ടോണുകളുടെ കാന്തികമണ്ഡലം (അഥവാ സ്പിൻ ദിശ) പുറത്തുനിന്നുള്ള റേഡിയോ ഊർജം നിലയ്ക്കുമ്പോൾ തിരികെ ആക്സ്യൽ ദിശയിലേക്ക് തിരിച്ചു പോകും. അവ ട്രാൻസ്വേഴ്‌സൽ പ്രതലത്തിൽ നിൽക്കുമ്പോൾ ട്രാൻസ്വേഴ്‌സൽ പ്രതലത്തിലുള്ള അവയുടെ കാന്തികപ്രഭാവം ഏറ്റവും കൂടുതലും, ആക്സ്യൽ ദിശയിലുള്ള കാന്തിക പ്രഭാവം ഏറ്റവും കുറവും (പൂജ്യം) ആയിരിയ്ക്കും. എന്നാൽ അവ ആക്സ്യൽ ദിശയിലേക്ക് തിരിച്ചു പോകുമ്പോൾ ആക്സ്യൽ ദിശയിലുള്ള അവയുടെ കാന്തികപ്രഭാവം ക്രമേണ കൂടിവരും. [[എക്സ്പോണെൻഷ്യൽ വളർച്ച | എക്സ്പൊണെൻഷ്യൽ]] ആയിട്ടാണ് ഇത് കൂടുന്നത്. ഇങ്ങനെ കൂടി അത് തുടക്കത്തിലുള്ള അവസ്ഥയിൽ എത്തും (പൂർണമായും ആക്സ്യൽ ദിശയിൽ).
 
ഇങ്ങനെ ട്രാൻസ്വേഴ്‌സൽ പ്രതലത്തിൽ നിന്നും ആക്സ്യൽ ദിശയിലേക്കുള്ള അവയുടെ കാന്തികപ്രഭാവത്തിന്റെ വളർച്ചയെ <math>T_1</math> റിലാക്സേഷൻ എന്ന് വിളിയ്ക്കുന്നു. ഇതിനു വേണ്ട സമയത്തെ <math>T_1</math> എന്ന പ്രതീകം കൊണ്ട് സൂചിപ്പിയ്ക്കുന്നു. ശരീരത്തിലെ ഓരോ തരം ഘടകങ്ങളിൽ ഉള്ള പ്രോട്ടോണുകൾക്കും ഈ സമയം വ്യത്യസ്തമായിരിയ്ക്കും. ജലം, കൊഴുപ്പ്, അസ്ഥി തുടങ്ങിയ ഓരോ ഭാഗത്തെയും പ്രോട്ടോണുകൾ വ്യത്യസ്ത വേഗതയിൽ ആണ് പൂർവാവസ്ഥ കൈവരിയ്ക്കുക. അതായത് ഈ സമയത്ത് അവയുടെ അവസ്ഥയുടെ ഒരു വിതരണം എടുത്താൽ വ്യത്യസ്ത ശരീരഘടകങ്ങൾ തമ്മിൽ നല്ല വ്യത്യാസമുള്ള (അഥവാ ഉയർന്ന കോൺസ്ട്രാസ്റ്റ് ഉള്ള) ഇമേജുകൾ ഉണ്ടാക്കി എടുക്കാൻ സാധിയ്ക്കും. ഇത്തരം ഇമേജുകളെ <math>T_1</math> വെയ്റ്റഡ് ഇമേജുകൾ എന്നു വിളിയ്ക്കുന്നു. ഇത്തരം ഇമേജുകളിൽ ജലം, സെറിബ്രൽ സ്പൈൻ ഫ്ലൂയിഡ് മുതലായ ദ്രാവകഘടകങ്ങൾ വളരെ കറുത്ത നിറത്തിലും കൊഴുപ്പ് അടങ്ങിയ ഭാഗങ്ങൾ താരതമ്യേന വെളുത്ത നിറത്തിലും കാണും. ആന്തരികാവയവങ്ങളുടെ അനാട്ടമി(ഘടന) മനസ്സിലാക്കാനാണ് ഇത്തരം ഇമേജുകൾ കൂടുതലായും ഉപയോഗിയ്ക്കുന്നത്.<ref>{{cite book |last1=McRobbie |first1=Donald W.|first2 = Elizabeth A. |last2=Moore|first3 = Martin J. |last3=Graves |first4 = Martin R. |last4=Prince | title=MRI from Picture to Proton |publisher=Cambridge University Press |location=Cambridge, UK|date=2003|url=https://books.google.de/books?id=gfuO6NK_InkC|pages=32|quote="They are often known as ‘anatomy scans’, as they show most clearly the boundaries between different tissues"}}</ref>
 
വിവിധ ശരീരകലകളുടെ <math>T_1</math>, <math>T_2</math> റിലാക്സേഷൻ സമയങ്ങൾ (1.5 ടെസ്‌ല കാന്തികമണ്ഡലത്തിൽ) താഴെക്കൊടുത്തിരിയ്ക്കുന്ന പട്ടികയിൽ കാണാം.<ref name="itis">{{cite web|url=https://itis.swiss/virtual-population/tissue-properties/database/relaxation-times/ |title=Relaxation Times |publisher= IT'IS Foundation, Switzerland |accessdate=2019-05-03}}</ref>
Line 90 ⟶ 91:
|}
<br>
 
===<math>T_2</math> വെയ്റ്റഡ്===
[[File:T2 relaxation.jpg |thumb| <math>T_2</math> റിലാക്സേഷൻ]]
മുകളിലെ വിവരണത്തിൽ വ്യക്തമായി പ്രതിപാദിയ്ക്കാത്ത ഒരു പ്രതിഭാസം കൂടി ശരീരത്തിലെ പ്രോട്ടോണുകൾ കാണിയ്ക്കുന്നുണ്ട്. ട്രാൻസ്വേഴ്‌സൽ പ്രതലത്തിലെ ഇവയുടെ കാന്തികപ്രഭാവവുമായി ബന്ധപ്പെട്ട ഒരു പ്രതിഭാസമാണിത്. <math>T_1</math> റിലാക്സേഷന്റെ വിവരണത്തിൽ ഒരു വോക്സെലിന്റെ ആകെ കാന്തികപ്രഭാവത്തിനെ റേഡിയോ പൾസ്‌ ഉപയോഗിച്ച് ട്രാൻസ്വേഴ്‌സൽ പ്രതലത്തിലേയ്ക്ക് പൂർണമായും ചെരിയ്ക്കുന്ന ഒരു പടി ഉണ്ടെന്നു കണ്ടല്ലോ. എന്നാൽ ഒരു വോക്സെലിന്റെ ആകെ കാന്തികപ്രഭാവം ചുറ്റുമുള്ള കാന്തികമണ്ഡലത്തിന് നേരെ തിരിഞ്ഞു നിൽക്കുന്ന വളരെ കുറച്ചു എണ്ണം അധിക പ്രോട്ടോണുകളുടെ കാന്തികപ്രഭാവത്തിൽ നിന്നും ഉണ്ടായതാണെന്നും കണ്ടു. സ്പിൻ അച്ചുതണ്ടിനു ചുറ്റും പുരസ്സരണം നടത്തുന്ന ഈ പ്രോട്ടോണുകൾ തുടക്കത്തിൽ വിവിധ ഫേസുകളിൽ ആയാണ് ഈ പുരസ്സരണം നടത്തുന്നത്. അതായത് പുരസ്സരണ വൃത്തത്തിന് മുകളിൽ നിന്ന് നോക്കിയാൽ ഇവ ഒരേ സമയം ഈ വൃത്തത്തിന്റെ പല ഭാഗങ്ങളിലായി കാണാം.
 
എന്നാൽ റേഡിയോ പൾസ് പുറപ്പെടുവിയ്ക്കുമ്പോൾ ഇവ എല്ലാം ഒരുമിച്ച് ട്രാൻസ്വേഴ്‌സൽ പ്രതലത്തിലേക്ക് ചെരിയുന്നതിനോടൊപ്പം ഇവയുടെ ഫേസുകൾ എല്ലാം ഒരുമിച്ച് ചേരുന്നു. അതായത് ഇപ്പോൾ ഇവ പുരസ്സരണ വൃത്തത്തിൽ ഒരുമിച്ചുകൂടിയായിട്ടാണ് പുരസ്സരണം നടത്തുക. അതിനാൽ അവയുടെ ട്രാൻസ്വേഴ്‌സൽ പ്രതലത്തിലെ ആകെ കാന്തികത (<math>M_xy</math>) ഓരോ പ്രോട്ടോണുകളുടെയും വ്യക്തിഗത ട്രാൻസ്വേഴ്‌സൽ കാന്തികതകളുടെ തുകയായിരിയ്ക്കും. എന്നാൽ റേഡിയോ പൾസ് നിലയ്ക്കുന്നതോടെ ഇവ ആക്സ്യൽ ദിശയിലേക്ക് തിരിച്ചു പോകുന്നതോടൊപ്പം തന്നെ വ്യത്യസ്ത ഫേസുകളിൽ എത്തിച്ചേരുകയും ചെയ്യും.<ref name="MIT_MR">{{cite web|url=http://web.mit.edu/hst.583/www/course2001/LECTURES/physics_1_notes.pdf |title=Basic Principles of Magnetic Resonance |publisher=MIT |accessdate=2019-05-04}}</ref> അതായത് പുരസ്സരണവൃത്തത്തിൽ ഒന്നിച്ചു പുരസ്സരണം നടത്തിയിരുന്ന ഇവ പല വേഗതയിലായി ഫേസ് നഷ്ടപ്പെട്ട് പുരസ്സരണവൃത്തത്തിന്റെ വിവിധ ഭാഗങ്ങളിൽ എത്തിച്ചേരുന്നു. ഇതിനാൽ ഇവയുടെ ട്രാൻസ്വേഴ്‌സൽ കാന്തികതകൾ പല ദിശയിൽ ആയിത്തീരുകയും അവ തമ്മിൽ കൂട്ടി കിട്ടുന്ന ആകെ ട്രാൻസ്വേഴ്‌സൽ കാന്തികത പൂജ്യം ആയിത്തീരുകയും ചെയ്യും. ഇങ്ങനെ ട്രാൻസ്വേഴ്‌സൽ കാന്തികത മാക്സിമം വിലയിൽ നിന്നും (റേഡിയോ പൾസ് നിറുത്തിയ നിമിഷം) ക്രമേണ പൂജ്യം ആയിത്തീരുന്നു പ്രക്രിയയാണ് <math>T_2</math> റിലാക്സേഷൻ. ഇതും എക്സ്പോണെൻഷ്യൽ വേഗതയിലാണ് നടക്കുക. ഇതിന് വേണ്ട സമയത്തെ <math>T_2</math> എന്ന് രേഖപ്പെടുത്തുന്നു.
 
<math>T_1</math> സമയവുമായി തട്ടിച്ചു നോക്കുമ്പോൾ <math>T_2</math> സമയം വളരെ കുറവാണ്. അതായത് ട്രാൻസ്വേഴ്‌സൽ പ്രതലത്തിലെ കാന്തികത വളരെ പെട്ടെന്ന് ഇല്ലാതായി തീരുന്നു. ശരീരത്തിലെ വിവിധ ടിഷ്യുകളിലെ പ്രോട്ടോണുകൾ വിവിധ <math>T_2</math> സമയങ്ങളിലാണ് <math>M_xy</math> കാന്തികത നഷ്ടപ്പെടുത്തുന്നത്. തൽഫലമായി റേഡിയോ പൾസ് നിറുത്തിയ ശേഷം ഇവയുടെ വിതരണത്തിന്റെ ഒരു ഇമേജ് എടുക്കുകയാണെങ്കിൽ ഇത് മറ്റൊരു തരം ജൈവ വിവരം ആണ് ഈ ഇമേജുകളിൽ കാണാൻ കഴിയുക. ജലാംശം, സെറിബ്രൽ സ്പൈൻ ഫ്ലൂയിഡ് തുടങ്ങിയവ വെളുത്ത നിറത്തിലും കൊഴുപ്പ് തുടങ്ങിയവ ചാരനിറത്തിലും കാണാൻ കഴിയും. ഇത്തരം ഇമേജുകളെ <math>T_2</math> വെയ്റ്റഡ് എന്ന് വിളിയ്ക്കുന്നു. <math>T_1</math> ഇമേജുകൾ ആന്തരികാവയവങ്ങളുടെ ഘടന മനസ്സിലാക്കാനാണ് ഉപയോഗിയ്ക്കുന്നത് എന്ന് കണ്ടല്ലോ. <math>T_2</math> ഇമേജുകൾ ശരീരത്തിലെ ആന്തരികക്ഷതങ്ങളും മറ്റു പാത്തോളജിക്കൽ വിവരങ്ങളും കണ്ടെത്താനാണ് ഉപയോഗിയ്ക്കുന്നത്.<ref>{{cite book |last1=McRobbie |first1=Donald W.|first2 = Elizabeth A. |last2=Moore|first3 = Martin J. |last3=Graves |first4 = Martin R. |last4=Prince | title=MRI from Picture to Proton |publisher=Cambridge University Press |location=Cambridge, UK|date=2003|url=https://books.google.de/books?id=gfuO6NK_InkC|pages=33|quote=" On these scans fluids have the highest intensity, and water- and fat-based tissues are mid-grey. T2 images are often thought of as ‘pathology’ scans because collections of abnormal fluid are bright against the darker normal tissue. So for example the meniscal tear in the knee shows up well because the synovial fluid in the tear is brighter than the cartilage"}}</ref>
 
==എം.ആർ.ഐ സ്കാനറിന്റെ ഭാഗങ്ങൾ ==
"https://ml.wikipedia.org/wiki/എം.ആർ.ഐ._സ്കാൻ" എന്ന താളിൽനിന്ന് ശേഖരിച്ചത്