1,240
തിരുത്തലുകൾ
(പുതിയ താള്: അമൂര്ത്ത ബീജഗണിതം ഗണിതശാസ്ത്രത്തിലെ ഗ്രൂപ്പ്,വലയം,ക്ഷേത്ര...) |
|||
അമൂര്ത്ത ബീജഗണിതം ഗണിതശാസ്ത്രത്തിലെ [[ഗ്രൂപ്പ് (ഗണിതശാസ്ത്രം)|ഗ്രൂപ്പ്]],[[വലയം]],[[ക്ഷേത്രം(ഗണിതശാസ്ത്രം)|ക്ഷേത്രം]],
മൗലികബീജഗണിതം രേഖീയക്ഷേത്രത്തിലേക്കും ക്രമബീജഗണിതത്തിലേക്കുമുള്ള ഒരു തുടക്കം മാത്രമാണ്
==ചരിത്രം==
ഗണിതശാസ്ത്രത്തിലെ പ്രശ്നങ്ങളും ഉദാഹരണങ്ങളുമാണ് ബീജഗണിതത്തെ വളര്ത്തിയത്.19ആം നൂറ്റാണ്ടിന്റെ അവസാനത്തോടെ ഏറെക്കുറേ പ്രശ്നങ്ങളും ബീജീയ സമവാക്യങ്ങളുമായി ബന്ധപ്പെട്ടിരുന്നു.താഴെ പറയുന്നവ പ്രധാനപ്പെട്ടവയാണ്.
*രേഖീയ ബീജഗണിതത്തിലെ [[മാട്രിക്സ്|മാട്രിക്സുകളുടേയും]] [[സാരണികം|സാരണികത്തിന്റേയും]] കണ്ടുപിടുത്തത്തിലേക്ക് നയിച്ച രേഖീയ സമവാക്യസംഹിതകളുടെ നിര്ദ്ധാരണം.
*ഗ്രൂപ്പ് എന്ന ആശയത്തിനു നിദാനമായ ഉയര്ന്ന കോടിയിലുള്ള ബഹുപദസമവാക്യങ്ങള് നിര്ദ്ധാരണം ചെയ്യുന്നതിനായി സൂത്രവാക്യങ്ങള് രൂപപ്പെടുത്താന് നടത്തിയ ശ്രമങ്ങള്.
*ദ്വിമാനവും അതിനുമുകളിലുമുള്ള സമവാക്യങ്ങളുടേയും [[ഡയഫന്റൈന് സമവാക്യം|ഡയഫന്റൈന് സമവാക്യങ്ങളുടേയും]] അങ്കഗണിതസൂക്ഷ്മപരിശോധന [[വലയം|വലയം]],[[മാതൃകാപരം|മാതൃകാപരം]] എന്നീ ആശയങ്ങള്ക്ക് വഴിതെളിച്ചു.
|
തിരുത്തലുകൾ