"ബന്ധനോർജ്ജം" എന്ന താളിന്റെ പതിപ്പുകൾ തമ്മിലുള്ള വ്യത്യാസം

വരി 44:
 
നമ്മള്‍ ഇപ്പോള്‍ പറഞ്ഞ അതേ യുക്തി ഉപയോഗിച്ച് ബന്ധനോര്‍ജ്ജ ഗ്രാഫ് വേറെ ഒരു സാധ്യതയും കൂടി തരുന്നു. അതായത് ഗ്രാഫിന്റെ ഇടത് ഭാഗത്ത്, താഴ്ന്ന മൂലകങ്ങളുടെ മൂന്നു നാല് അണുകേന്ദ്രങ്ങള്‍ കൂടിചേരുകയാണെങ്കില്‍ അത് കൂടുതല്‍ സ്ഥിരതയുള്ള ഒരു മൂലകം ആയി തീരുന്നു. ഈ പ്രക്രിയക്കാണ് അണു സംയോജനം അഥവാ Nuclear fusion എന്നു പറയുന്നത്. നക്ഷത്രങ്ങളില്‍ ഈ പ്രക്രിയ വഴിയാണ് ഊര്‍ജ്ജം ഉല്‌പാദിപ്പിക്കുന്നത്. പക്ഷെ അണുസംയോജനത്തിന്റെ കാര്യത്തില്‍ ലഭിയ്ക്കുന്ന ഊര്‍ജ്ജത്തിന്റെ അളവിന്റെ കാര്യത്തില്‍ വ്യത്യാസം ഉണ്ട്. അതിനെകുറിച്ചുള്ള വിവരങ്ങള്‍ താഴെ.
 
#ഈ ഗ്രാഫ് പരിശോധിച്ചാല്‍ മനസ്സിലാകും ഹൈഡ്രജന്റെ ബന്ധനോര്‍ജ്ജം 0 MeV ആകുമ്പോള്‍, ഹീലിയത്തിന്റേത് 7.075 MeV ആണ്. അതായത് ഹൈഡ്രജന്‍ അണുകേന്ദ്രങ്ങളെ (പ്രോട്ടോണുകളെ) സംയോജിച്ചിപ്പിച്ച് ഹീലിയം അണുവാക്കുമ്പോള്‍ ആണ് ഊര്‍ജ്ജത്തിന്റെ അളവ് ഏറ്റവും കൂടുതല്‍. മറിച്ച് ഹീലിയത്തെ സംയോജിപ്പിച്ച് അതിനടുത്ത മൂലകം (കാര്‍ബണ്‍) ഉണ്ടാക്കുമ്പോള്‍ ഉള്ള കാര്യം നോക്കുക. കാര്‍ബണിന്റെ ബന്ധനോര്‍ജ്ജം 7.45 MeV ആണ്. ഹീലിയത്തിന്റേത് 7.075 MeV തും. അതിനാല്‍ ഹീലിയത്തിന്റെ അണുകേന്ദ്രത്തെ പ്രോട്ടോണുമായി (ഹൈഡ്രജന്‍ അണുകേന്ദ്രവുമായി) സംയോജിപ്പിച്ച് കാര്‍ബണ്‍ അണുകേന്ദ്രം ഉണ്ടാകുമ്പോള്‍ 0.375 MeV (7.45 - 7.075) ഊര്‍ജ്ജം (energy released per nucleon) മാത്രമാണ് പുറത്തുവരിക. മറ്റു ഉയര്‍ന്ന മൂകലങ്ങളിലേക്ക് പോകുംതോറും പുറത്തു വരുന്ന ഊര്‍ജ്ജത്തിന്റെ അളവ് പിന്നേയും കുറഞ്ഞു വരുന്നത് കാണാം. അതിനാല്‍ ഹൈഡ്രജന്‍ അണുകേന്ദ്രങ്ങളെ സംയോജിപ്പിച്ച് ഹീലിയം അണുകേന്ദ്രം ആക്കുന്ന പ്രക്രിയക്കാണ് പ്രപഞ്ചത്തില്‍ ഏറ്റവും കൂടുതല്‍ ഊര്‍ജ്ജം പുറത്തു വിടുവാന്‍ കഴിയുക. നക്ഷത്രങ്ങള്‍ ഒക്കെ ഊര്‍ജ്ജം ഉല്‌പാദിപ്പിക്കുന്നത് ഈ പ്രക്രിയ വഴിയാണ്. ഈ ഊര്‍ജ്ജ ഉല്‍‌പാദനത്തിന്റെ വിശദാംശങ്ങള്‍ നമ്മള്‍ അടുത്ത പോസ്റ്റില്‍ പരിചയപ്പെടും.
#ഈ ഗ്രാഫില്‍ നിന്നു ഏറ്റവും കൂടുതല്‍ ബന്ധനോര്‍ജ്ജം ഉള്ളത് ഇരുമ്പിനാണെന്നു (Iron) നമുക്ക് മനസ്സിലാക്കാമല്ലോ. അതിന്റെ അര്‍ത്ഥം വളരെ വ്യക്തവുമാണല്ലോ. അണു സംയോജനം വഴി ഇരുമ്പിനു മുകളിലുള്ള മൂലകങ്ങള്‍ ഉണ്ടാകുമ്പോള്‍ ഊര്‍ജ്ജം പുറത്തു വിടുകയല്ല മറിച്ച് ഊര്‍ജ്ജം ആഗിരണം ചെയ്യുകയാണ്. അപ്പൊള്‍ നക്ഷത്രങ്ങളില്‍ ഒക്കെ അത്തരം ഒരു പ്രക്രിയക്ക് വഴിയില്ല. കാരണം ഊര്‍ജ്ജം ഉല്‍‌പാദിപ്പിക്കുവാന്‍ പറ്റാത്ത പ്രക്രിയ നടക്കുമ്പോള്‍ നക്ഷത്രങ്ങളില്‍ ഗുരുത്വാകര്‍ഷണം മേല്‍ക്കൈ നേടുന്നു. അതോടെ നക്ഷത്രങ്ങളുടെ താപനില കുറയുകയും അണുസംയോജനം നടക്കാതാവുകയും ചെയ്യും. അപ്പോള്‍ പിന്നെ ഇരുമ്പിനു മുകളില്‍ ഉള്ള മൂലകങ്ങള്‍ ഈ പ്രപഞ്ചത്തില്‍ എങ്ങനെ ഉണ്ടായി? അതിനുള്ള ഉത്തരം ജ്യോതിശാസ്ത്ര ബ്ലോഗ്ഗിലെ തുടര്‍ന്നുള്ള പോസ്റ്റുകളില്‍ നിന്നു നമുക്ക് മനസ്സിലാക്കാം. പ്രപഞ്ച രഹസ്യങ്ങളുടെ അത്ഭുത കലവറയിലേക്കുള്ള യാത്ര നമ്മള്‍ തുടങ്ങിയിട്ടേ ഉള്ളൂ. അവിടെ നമ്മളെ കാത്തിരിക്കുന്ന അത്ഭുത സത്യങ്ങള്‍ അനവധിയാണ്.
"https://ml.wikipedia.org/wiki/ബന്ധനോർജ്ജം" എന്ന താളിൽനിന്ന് ശേഖരിച്ചത്