"ന്യൂട്ടന്റെ ചലനനിയമങ്ങൾ" എന്ന താളിന്റെ പതിപ്പുകൾ തമ്മിലുള്ള വ്യത്യാസം

112 ബൈറ്റുകൾ നീക്കംചെയ്തിരിക്കുന്നു ,  6 വർഷം മുമ്പ്
തിരുത്തലിനു സംഗ്രഹമില്ല
{{prettyurl|Newton's laws of motion}}
{{mergeto|ന്യൂട്ടന്റെ ചലനനിയമങ്ങൾ}}
{{Classical mechanics}}
രണ്ടാം ചലനനിയമം ബലം അളക്കാനുള്ള ഒരു മാർഗം കാണിച്ചു തരുന്നു .ഈ നിയമത്തിൽ നിന്നും ബലം കണക്കാക്കാനുള്ള ഒരു സമവാക്യം ലഭിക്കുന്നു. ഈ നിയമത്തിന്റെ ഒന്നാം ഭാഗം അനുസരിച്ച് ഒരു വസ്തുവിനുണ്ടാകുന്ന ആക്ക വ്യത്യസത്തിന്റെ നിരക്ക് അതിൻ മേൽ പ്രയോഗിക്കപ്പെടുന്ന ബലത്തിന് നേർ അനുപാതത്തിലാണ്. ചലിച്ച് കൊണ്ടിരിക്കുന്ന ഒരു വസ്തുവിന്റെ കാര്യം എടുക്കുക.അതിനു ഒരു നിശ്ചിത അളവ് ആക്കം ഉണ്ട് .അതിന്മേൽ ഒരു ബലം അൽപ സമയത്തേക്ക് പ്രവർത്തിക്കുന്നു എന്നിരിക്കട്ടെ. അതിന്റെ പ്രവേഗത്തിന് അപ്പോൾ മാറ്റം വരുന്നു. പ്രവേഗ മാറ്റം ബലത്തെയും, ബലം പ്രവർത്തിച്ച സമയത്തെയും ആശ്രയിച്ചിരിക്കുന്നു. പ്രവേഗ മാറ്റം സംഭവിച്ചതിനാൽ ആക്കത്തിനും വ്യത്യസമുണ്ടാവുന്നു.എന്നാൽ ഒരു സെക്കന്റിലുണ്ടായ ആക്ക വ്യത്യാസം അഥവാ ആക്ക വ്യത്യാസത്തിന്റെ നിരക്ക് ബലത്തെ അടിസ്ഥാനപ്പെടുത്തി ഇരിക്കുന്നു. ബലം വർധിച്ചതാണെങ്കിൽ ആക്ക വ്യത്യസത്തിന്റെ നിരക്കും വർധിച്ച തോതിലായിരിക്കും. ഇത് തിരിച്ചു പറഞ്ഞാൽ ആക്ക വ്യത്യാസത്തിന്റെ നിരക്ക് വർധിച്ചതണെങ്കിൽ പ്രയോഗിക്കപ്പെട്ട ബലം ഉയർന്നതായിരിക്കും. മറ്റൊരു വിധത്തിൽ പറഞ്ഞാൽ ആക്ക വ്യത്യാസത്തിന്റെ നിരക്ക് ഒരു വസ്തുവിൻ മേൽ പ്രയോഗികപ്പെടുന്ന ബലത്തിന് നേർ അനുപാതത്തിലായിരിക്കും .<br />
{{mergefrom|ന്യൂട്ടന്റെ ഒന്നാം ചലനനിയമത്തിന്റെ പ്രസക്തി}}
ഈ നിയമത്തിന്റെ രണ്ടാം ഭാഗത്തിൽ പറയുന്നത് ആക്ക വ്യത്യാസം സംഭവിക്കുന്നത് ബലത്തിന്റെ ദിശയിൽ തന്നെ ആണെന്നാണ്. ഈ കാര്യം താഴെ പറയും പ്രകാരം വ്യക്തമാക്കാം. വസ്തുവിന്റെ ചലനത്തിന്റെ ദിശയിൽ തന്നെയാണ് ബലവും പ്രവർത്തിക്കുന്നത് എങ്കിൽ ആക്ക വ്യത്യാസം പോസിറ്റീവ് ആയിരിക്കും. അതായത് ആക്കം വർധിക്കും. ബലത്തിന്റെ പ്രവർത്തനദിശ ചലനത്തിന് വിപരീതമാണെങ്കിൽ ആക്കവ്യത്യാസം നെഗറ്റീവ് ആയിരിക്കും. അതായത് ആക്കം കുറയുന്നു.
{{mergetomergefrom|ന്യൂട്ടന്റെ ചലനനിയമങ്ങൾഒന്നാം ചലനനിയമം}}
 
{{mergefrom|ന്യൂട്ടന്റെ രണ്ടാം ചലനനിയമം}}
==ബലം അളക്കാനുള്ള സമവാക്യം==
{{mergefrom|ന്യൂട്ടന്റെ രണ്ടാം ചലന നിയമത്തിന്റെ പ്രസക്തി}}
[[ചിത്രം:Newtons laws in latin.jpg|thumb|right|200px|ന്യൂട്ടന്റെ ആദ്യ രണ്ട് ചലന നിയമങ്ങൾ, ലാറ്റിൻ ഭാഷയിൽ, ഫിലോസഫിയ നാചുറാലിസ് പ്രിൻസിപിയ മാത്തമാറ്റിക്കയുടെ 1687ലെ യഥാർത്ഥ പതിപ്പിൽ നിന്നും.]]
ഒരു വസ്തുവിൽ അനുഭവപ്പെടുന്ന ബലങ്ങളും വസ്തുവിന്റെ ചലനങ്ങളും തമ്മിലുള്ള ബന്ധം വിശദീകരിക്കുന്ന മൂന്ന് ഭൗതിക നിയമങ്ങളാണ് '''ന്യൂട്ടന്റെ ചലന നിയമങ്ങൾ'''. [[സർ ഐസക് ന്യൂട്ടൺ]] ആണ് തന്റെ ''[[ഫിലോസഫിയ നാചുറാലിസ് പ്രിൻസിപിയ മാത്തമാറ്റിക്ക|പ്രകൃതിദർശനത്തിന്റെ ഗണിതനിയമങ്ങൾ]]''(1687) എന്ന കൃതിയിൽ സം‌യോജിതമായി പ്രസിദ്ധീകരിച്ചത്.
 
== ഒന്നാം ചലന നിയമം (ജഡത്വ നിയമം) ==
രണ്ടാം ചലനനിയമത്തിൽ നിന്നും ബലത്തിന്റെ പരിമാണം നിർണ്ണയിക്കുന്നതിന് ഒരു സമവാക്യം ഉണ്ടാക്കാൻ കഴിയും 'm' പിണ്ഡമുള്ള ഒരു വസ്തു 'u' പ്രവേഗത്തോടുകൂടി ചലിക്കുന്നുവെന്നിരിക്കട്ടെ അതിന്റെ ചലന ദിശയിൽ 'F' ബലം അതിന്മേൽ 't' സമയത്തേക്ക് പ്രവർത്തിക്കുമ്പോൾ അതിന്റെ പ്രവേഗം 'v' ആയി മാറി എന്നിരിക്കട്ടെ,
[[File:first law.ogg|300px|thumb|[[വാൾട്ടർ ലെവിൻ]] ന്യൂട്ടന്റെ ഒന്നാം ചലന നിയനം വിശദീകരിക്കുന്നു. <small>([http://ocw.mit.edu/courses/physics/8-01-physics-i-classical-mechanics-fall-1999/video-lectures/lecture-6/ MIT Course 8.01])</small><ref>
{{cite video
| people = [[Walter Lewin]] | date = September 20, 1999
| title = Newton’s First, Second, and Third Laws. MIT Course 8.01: Classical Mechanics, Lecture 6.
| url = http://ocw.mit.edu/courses/physics/8-01-physics-i-classical-mechanics-fall-1999/video-lectures/lecture-6/
| format = ogg | medium = videotape | language = English
| publisher = [[MIT OpenCourseWare|MIT OCW]] | location = Cambridge, MA USA
| accessdate = December 23, 2010 | time = 0:00–6:53 | ref =lewin1
}}</ref> ]]
ഒരു അസന്തുലിതമായ ബാഹ്യബലം പ്രവർത്തിക്കാത്തിടത്തോളം ഓരോ വസ്തുവും അതിന്റെ നിശ്ചലാവസ്ഥയിലോ നേർ രേഖയിലുള്ള സമാന ചലനത്തിലോ തുടരുന്നതാണു.
 
വസ്തുവിന്റെ ഈ മൗലികഗുണധർമ്മത്തെ ജഡത്വം എന്നുപറയുന്നു.നിശ്ചലാവസ്ഥയിലുള്ള വസ്തുവിന്റെ ജഡത്വമാണ് അതിന്റെ ദ്രവ്യമാനം. ഏകസമാന ചലനാവസ്ഥയിലുള്ള വസ്തുവിന്റെ ജഡത്വമാണ് സംവേഗം. ഒരു വസ്തുവിന്റെ നിശ്ചലാവസ്ഥയോ ഏകസമാന ചലനാവസ്ഥയോ മാറ്റാനാവശ്യമായതാണ് ബലം.
 
ഈ നിയമപ്രകാരം ഒരു വസ്തുവിൽ അനുഭവപ്പെടുന്ന പരിണിതബലം പൂജ്യമായാൽ അതിന്റെ പ്രവേഗം സ്ഥിരമായിരിക്കും.
 
== രണ്ടാം ചലന നിയമം==
ഒരു വസ്തുവിലുണ്ടാകുന്ന ആക്കവ്യത്യാസത്തിന്റെ നിരക്ക് അതിന്മേൽ പ്രയോഗിക്കപ്പെടുന്ന അസന്തുലിത ബലത്തിനു നേർ അനുപാതത്തിലും ആക്കവ്യത്യാസം സംഭവിക്കുന്നത് ബലത്തിന്റെ ദിശയിലും ആയിരിക്കും.
 
 
ബലത്തിന്റെ പരിമാണം എത്ര എന്നറിയാൻ ഈ നിയമം വഴിതെളിക്കുന്നു. സംവേഗത്തിൽ വരുന്ന മാറ്റത്തിന്റെ നിരക്ക് കണക്കാക്കിയാൽ ബലം എത്രയെന്ന് നിശ്ചയിക്കാം.
വസ്തുവിന്റെ ആദ്യ ആക്കം = mu
 
== മൂന്നാം ചലന നിയമം==
വസ്തുവിന്റെ അന്ത്യ ആക്കം = mv
ഓരോ പ്രവർത്തനത്തിനും തുല്യവും വിപരീതവും ആയ ഒരു പ്രതിപ്രവർത്തനം ഉണ്ടായിരിക്കും.
 
അതായത് ഒരുവസ്തു മറ്റൊരുവസ്തുവിൽ ബലം പ്രയോഗിച്ചാൽ രണ്ടാമത്തെ വസ്തു ആദ്യത്ത വസ്തുവിൽ തുല്യമായ ബലം പ്രയോഗിക്കുന്നു. ബലങ്ങൾ രണ്ടും തുല്യവും വിപരീത ദിശയിലുള്ളതുമായിരിക്കും.
ആക്ക വ്യത്യാസം = m(v - u)
 
==അവലംബം==
ആക്ക വ്യത്യാസത്തിന്റെ നിരക്ക് =(m(v-u))/t
<references/>
 
{{physics-stub|Newton's laws of motion}}
പ്രവേഗ മാറ്റത്തിന്റെ നിരക്ക് ത്വരണമാവുന്നു. അതായത് (v - u)/t ത്വരണമാവുന്നു(a).
[[വിഭാഗം:ചലന നിയമങ്ങൾ]]
.
ആക്കവ്യത്യാസത്തിന്റെ നിരക്ക് = m X a
 
[[വർഗ്ഗം:ഐസക്ക് ന്യൂട്ടൺ]]
രണ്ടാം ചലനനിയമമനുസരിച്ച് ആക്കവ്യത്യാസത്തിന്റെ നിരക്ക് പ്രയോഗിക്കപ്പെട്ട ബലത്തിന് ആനുപാതികമാണ് . F =k X m X a എന്നു കണക്കാക്കാം . ഇവിടെ k എന്നത്ഒരു സ്ഥിരാങ്ക മാണ്. അതിന്റെ മൂല്യം 1 ആണ്. അതു കൊണ്ട് ന്യൂട്ടന്റെ രണ്ടാം ചലന സമവാക്യം നമുക്ക് F =m X a എന്ന് അനുമാനിക്കാം. (F = ma)
[[വർഗ്ഗം:ഭൗതികശാസ്ത്രത്തിന്റെ അടിസ്ഥാനതത്ത്വങ്ങൾ]]
133

തിരുത്തലുകൾ

"https://ml.wikipedia.org/wiki/പ്രത്യേകം:മൊബൈൽവ്യത്യാസം/1908706" എന്ന താളിൽനിന്ന് ശേഖരിച്ചത്