"ന്യൂട്ടന്റെ ചലനനിയമങ്ങൾ" എന്ന താളിന്റെ പതിപ്പുകൾ തമ്മിലുള്ള വ്യത്യാസം

508 ബൈറ്റുകൾ കൂട്ടിച്ചേർത്തിരിക്കുന്നു ,  6 വർഷം മുമ്പ്
തിരുത്തലിനു സംഗ്രഹമില്ല
{{mergeto|ന്യൂട്ടന്റെ ചലനനിയമങ്ങൾ}}
ന്യൂട്ടന്റെ ഒന്നാം ചലനനിയമത്തിന് രണ്ട് ഭാഗങ്ങളുണ്ട്. അതിന്റെ ആദ്യഭാഗം ജഡത്വത്തെപ്പറ്റിയുള്ള നിർവചനവും രണ്ടാമത്തെ ഭാഗം ബലത്തിനെ സംബന്ധിച്ചുലള്ള നിർവചനവും തരുന്നു. ഒന്നാം ഭാഗത്തതിൽ നിന്നും നിശ്ചലാവസ്ഥയിലുള്ള ഒരു വസ്തു അസന്തുലിതമായ ഒരു ബാഹ്യബലം അതിൻമേൽ പ്രവർത്തിക്കാതിരുന്നാൽ അതേ അവസ്ഥയിൽത്തന്നെ തുടർന്നുകൊണ്ടിരിക്കും എന്ന് കിട്ടുന്നു. ഉദാഹരണത്തിന് മേശപ്പുറത്തിരിക്കുന്ന ഒരു പുസ്തകത്തിന്റെ കാര്യം പരിഗണിക്കാം. ആരെങ്കിലും അത് മാറ്റിവെക്കുന്നില്ലെങ്കിൽ അത് അവിടെത്തന്നെ ഇരിക്കുമെന്ന് നമ്മുടെ അനുഭവത്തിൽകൂടി നമുക്ക് അറിവുള്ളതാണല്ലോ. ബുക്കിന്മൽ പ്രവർത്തിക്കുന്ന രണ്ടു ബലങ്ങളുണ്ട്. ഒന്ന് ഭൂമിയുടെ താഴോട്ടുള്ള ആകർഷണവും മറ്റേത് മേശയുടെ മുകളിലേക്കുള്ള തള്ളലുമാണ്. ഇവ രണ്ടും ഒരേ വസ്തൂവിൽത്തന്നെ പ്രവർത്തിക്കുന്നവയും എന്നാൽ വിപരീതദിശയിലുള്ളവയുമായ തുല്യബലങ്ങളാണ്. അതിനാൽ അവ പരസ്പരം തുലനം ചെയ്യുന്നു. ഇത്തരം ബലങ്ങളെ സന്തുലിത ബലങ്ങൾ എന്നു പറയും. അവയ്ക്ക് ഒരു വസ്തുവിൽ ചലനമുളവാക്കാൻ സാധ്യമല്ല. ഇക്കാരണത്താൽ ബുക്കിന്മേൽ ഒരു അസന്തുലിത ബലം പ്രവർത്തിക്കുന്നില്ല. അതുകൊണ്ട് പുസ്തകം നിശ്ചലമായിത്തന്നെ ഇരിക്കുന്നു. അതായത് പുസ്തകത്തിന് അതിന്റെ സ്ഥിതി തുടർന്നുകൊണ്ട് പോവാനുള്ള പ്രവണതയാണ്. ഇനി പുസ്തകത്തിന്മേൽ ഒരു തിരശ്ചീനബലം പ്രയോഗിക്കുക. അതു നീങ്ങാൻ തുടങ്ങുന്നു. ഇതിൽനിന്നും ചലനം സാധ്യമാക്കുന്നതിന് ഏതെങ്കിലും ഒരസന്തുലിതബലം വസ്തുവിന്മേൽ പ്രയോഗിക്കണം എന്ന് വ്യക്തമാവുന്നു.<br />
രണ്ടാം ചലനനിയമം ബലം അളക്കാനുള്ള ഒരു മാർഗം കാണിച്ചു തരുന്നു .ഈ നിയമത്തിൽ നിന്നും ബലം കണക്കാക്കാനുള്ള ഒരു സമവാക്യം ലഭിക്കുന്നു .ഈ നിയമത്തിന്റെ ഒന്നാം ഭാഗം അനുസരിച്ച് ഒരു വസ്തു വിനുണ്ടാകുന്ന ആക്ക വ്യത്യസത്തിന്റെ നിരക്ക് അതിൻ മേൽ പ്രയോഗിക്കപ്പെടുന്ന ബലത്തിന് നേർ അനുപാതത്തിലാണ്. ചലിച്ച് കൊണ്ടിരിക്കുന്ന ഒരു വസ്തുവിന്റെ കാര്യം എടുക്കുക.അതിനു ഒരു നിശ്ചിത അളവ് ആക്കം ഉണ്ട് .അതിന്മേൽ ഒരു ബലം അൽപ സമയത്തേക്ക് പ്രവർത്തിക്കുന്നു എന്നിരിക്കട്ടെ .അതിന്റെ പ്രവേഗത്തിന് അപ്പോൾ മാറ്റം വരുന്നു .പ്രവേഗ മാറ്റം ബലത്തെയും ,ബലം പ്രവർത്തിച്ച സമയത്തെയും ആശ്രയിച്ചിരിക്കുന്നു .പ്രവേഗ മാറ്റം സംഭവിച്ചതിനാൽ ആക്കത്തിനും വ്യത്യസമുണ്ടാവുന്നു.എന്നാൽ ഒരു സെക്കന്റിലുണ്ടായ ആക്ക വ്യത്യാസം അഥവാ ആക്ക വ്യത്യാസത്തിന്റെ നിരക്ക് ബലത്തെ അടിസ്ഥാനപ്പെടുത്തി ഇരിക്കുന്നു .ബലം വർധിച്ചതാണെങ്കിൽ ആക്ക വ്യത്യസത്തിന്റെ നിരക്കും വർധിച്ച തോതിലായിരിക്കും.ഇത് തിരിച്ചു പറഞ്ഞാൽ ആക്ക വ്യത്യാസത്തിന്റെ നിരക്ക് വർധിച്ചതണെങ്കിൽ പ്രയോഗിക്കപ്പെട്ട ബലം ഉയർന്നതായിരിക്കും .മറ്റൊരു വിധത്തിൽ പറഞ്ഞാൽ ആക്ക വ്യത്യാസത്തിന്റെ നിരക്ക് ഒരു വസ്തുവിൻ മേൽ പ്രയോഗികപ്പെടുന്ന ബലത്തിന് നേർ അനുപാതത്തിലായിരിക്കും .ഈ നിയമത്തിന്റെ രണ്ടാം ഭാഗത്തിൽ പറയുന്നത് ആക്ക വ്യത്യാസം സംഭവിക്കുന്നത് ബലത്തിന്റെ ദിശയിൽ തന്നെ ആണെന്നാണ് .ഈ കാര്യം താഴെ പറയും പ്രകാരം വ്യക്തമാക്കാം.വസ്തുവിന്റെ ചലനത്തിന്റെ ദിശയിൽ തന്നെയാണ് ബലവും പ്രവർത്തിക്കുന്നത്എങ്കിൽ ആക്ക വ്യത്യാസം പോസിറ്റീവ് ആയിരിക്കും .അതായത് ആക്കം വർധിക്കും .ബലത്തിന്റെ പ്രവർത്തന ദിശ ചലനത്തിന് വിപരീത മാണെങ്കിൽ ആക്ക വ്യതാസം നെഗറ്റീവ് ആയിരിക്കും.അതായത് ആക്കം കുറയുന്നു .<br />
ബലം അളക്കാനുള്ള സമവാക്യം
 
<br />
രണ്ടാം ചലനനിയമത്തിൽ നിന്നും ബലത്തിന്റെ പരിമാണം നിർണ്ണയിക്കുന്നതിന് ഒരു സമവാക്യം ഉണ്ടാക്കാൻ കഴിയും 'm' പിണ്ഡമുള്ള ഒരു വസ്തു 'u' പ്രവേഗത്തോടുകൂടി ചലിക്കുന്നുവെന്നിരിക്കട്ടെ അതിന്റെ ചലന ദിശയിൽ 'F' ബലം അതിന്മേൽ 't' സമയത്തേക്ക് പ്രവർത്തിക്കുമ്പോൾ അതിന്റെ പ്രവേഗം 'v' ആയി മാറി എന്നിരിക്കട്ടെ <br />
ഒരു കാറിനുള്ളിൽ ഒരാൾ ഇരിക്കുന്നതായി കണക്കാക്കുക. അയാൾ കാറിനെ തള്ളുന്നുവെന്നിരിക്കട്ടെ. കാർ നീങ്ങുകയില്ല. കാരണം അവിടെ പ്രയോഗിക്കുന്ന തള്ളൽ ബലം ബാഹ്യമല്ല,ആന്തരികമാണ്. അയാൾ വെളിയിലിറങ്ങിനിന്നു കൊണ്ടാണ് കാർ തള്ളുന്നതെങ്കിൽ കാർ ചലിക്കും. ഈ സന്ദർഭത്തിൽ പ്രയോഗിക്കപ്പെട്ടത് ബാഹ്യബലമാണ്. അതിനാൽ ബാഹ്യബലത്തിനു മാത്രമേ ചലനം ഉണ്ടാക്കാൻ കഴിയുകയുള്ളു എന്ന് തെളിയുന്നു.<br />
 
വസ്തുവിന്റെ ആദ്യ ആക്കം = mu<br />
<br />
 
ഇനി സമാനവേഗതയിൽ നേർരേഖാപാതയിലൂടെ സഞ്ചരിച്ചുകൊണ്ടിരിക്കുന്ന ഒരു വസ്തുവിന്റെ കാര്യം പരിഗണിക്കാം. ചലനനിയമമനുസരിച്ച് ബാഹ്യബലങ്ങളൊന്നും അതിൽ പ്രവർത്തിക്കുന്നില്ലെങ്കിൽ അത് അതിന്റെ ചലനാവസ്ഥയിൽ തന്നെ തുടർന്നു കൊണ്ടിരിക്കും. ഉദാഹരണത്തിന് നിങ്ങൾ നിരപ്പായ നേർറോഡിൽ കൂടി സൈക്കിൾ ചവിട്ടുകയാണെന്ന് കരുതുക സൈക്കിൾ വേഗത്തിൽ പൊയ്ക്കൊണ്ടിരിക്കുമ്പോൾ ചവിട്ടുന്നത് നിർത്തുന്നു എന്നിരിക്കട്ടെ. സൈക്കിൾ പെട്ടെന്ന് നിന്ന് പോവുകയില്ല. അത് കുറേ സമയത്തേക്ക് കൂടെ സഞ്ചരിച്ചു കൊണ്ടിരിക്കും. കുറേ ദൂരം സഞ്ചരിച്ച ശേഷം, തറ പ്രയോഗിക്കുന്ന ഘർഷണ ബലത്തിന് വിധേയമായി നിശ്ചലാവസ്ഥയിൽ എത്തും. ഇവിടെയും സൈക്കിളിന്റെ ചലനാവസ്ഥയ്ക്ക് മാറ്റം വരുത്തിയത് ഒരു അസന്തുലിതമായ ബാഹ്യ ബലം ആണ് എന്ന് കാണാം. തറയ്ക്ക് ഘർഷണബലം ഇല്ലായിരുന്നെങ്കിൽ സൈക്കിൾ സ്ഥിരമായ വേഗതയിൽ അതേ ദിശയിൽ തന്നെ അതിന്റെ സഞ്ചാരം അവിരാമം തുടർന്ന് കൊണ്ടിരിക്കും.
വസ്തുവിന്റെ അന്ത്യ ആക്കം = mv <br />
 
ആക്ക വ്യത്യാസം = m(v-u) <br />
 
ആക്ക വ്യത്യാസത്തിന്റെ നിരക്ക് =( m(v-u))/t<br />
 
പ്രവേഗ മാറ്റത്തിന്റെ നിരക്ക് ത്വരണമാവുന്നു <br />
 
അതായത് (v-u)/t ത്വരണമാവുന്നു(a).<br />
 
ആക്കവ്യത്യാസത്തിന്റെ നിരക്ക് = m*a<br />
രണ്ടാം ചലനനിയമമനുസരിച്ച് ആക്കവ്യത്യാസത്തിന്റെ നിരക്ക് പ്രയോഗിക്കപ്പെട്ട ബലത്തിന് ആനുപാതികമാണ് . F =k*m*a എന്നു കണക്കാക്കാം . ഇവിടെ k എന്നത്ഒരു സ്ഥിരാംഗമാണ് . അതിന്റെ മൂല്യം 1 ആണ്<br />
. അതു കൊണ്ട് ന്യൂട്ടന്റെ രണ്ടാം ചലന സമവാക്യം നമുക്ക്F =m*aഎന്ന് അനുമാനിക്കാം.
27,399

തിരുത്തലുകൾ

"https://ml.wikipedia.org/wiki/പ്രത്യേകം:മൊബൈൽവ്യത്യാസം/1848102" എന്ന താളിൽനിന്ന് ശേഖരിച്ചത്