"പരവലയം" എന്ന താളിന്റെ പതിപ്പുകൾ തമ്മിലുള്ള വ്യത്യാസം

40 ബൈറ്റുകൾ കൂട്ടിച്ചേർത്തിരിക്കുന്നു ,  7 വർഷം മുമ്പ്
തിരുത്തലിനു സംഗ്രഹമില്ല
[[ദ്വിമാനതലം|ദ്വിമാനതലത്തിൽ]] രചിച്ചിരിക്കുന്ന ഒരുതരം [[വക്രം|വക്രമാണ്]] '''പരവലയം''' അഥവാ '''പരാബൊള'''. ഒരു സമതലത്തിൽ ശയിക്കുന്ന ഒരു രേഖയും , ആ രേഖയിലല്ലാത്ത ഒരു ബിന്ദുവും ഉണ്ടെന്നിരിക്കട്ടെ; ആ രേഖയിൽ നിന്നും (നിയതരേഖ; Directrix) ബിന്ദുവിൽ നിന്നും ( കേന്ദ്രം; focus) ഉള്ള അകലം തുല്യമാകത്തക്കവിധം സഞ്ചരിക്കുന്ന മറ്റൊരു ബിന്ദുവിന്റെ സഞ്ചാരപഥത്തെ ( Locus) ആണ് പരവലയം അല്ലെങ്കിൽ പരാബൊള (Parabola) എന്നു പറയുന്നത്.
 
ഒരു [[വൃത്തസ്തൂപിക|നേർവൃത്തസ്തൂപികയെ]] അതിന്റെ ഏതെങ്കിലും ഒരു [[പാർശ്വരേഖ|പാർശ്വരേഖയ്ക്]] സമാന്തരമായി ഒരു സമതലം ഛേദിക്കുമ്പോൾ ലഭിക്കുന്ന ദ്വിമാനവക്രരൂപവും പരവലയമാണു്. [[വൃത്തസ്തൂപിക|വൃത്തസ്തൂപികയുടെ]] ശീർഷവും (Vertex) അതിന്റ [[ആധാരവൃത്തം|ആധാരവൃത്തത്തിലെ]] ഏതെങ്കിലും ഒരു [[ബിന്ദു|ബിന്ദുവും]] ബന്ധിപ്പിക്കുന്ന ഋജുരേഖയെയാണ് [[പാർശ്വരേഖ]] എന്നു പറയുന്നത്. വൃത്തസ്തൂപികയെ ഛേദിക്കുന്ന തലത്തിന്, അതിന്റെ അക്ഷവുമായുണ്ടാകുന്ന ചരിവ് അനുസരിച്ച്, പല ദ്വിമാനവക്രങ്ങൾ ലഭിക്കുന്നു. [[വൃത്തം]], [[ദീർഘവൃത്തം]], പരവലയം, [[അതിവലയം]] എന്നിവയാണവ. എന്നാൽ, ഛേദതലം, പ്രസ്തുത നേർവൃത്തസ്തൂപികയെ ഛേദിക്കാതെ അതിന്റെ വക്രപ്രതലം സ്പർശിക്കുക മാത്രം ചെയ്യുമ്പോൾ, ഒരു ഋജുരേഖയാണ് ലഭിക്കുന്നത്. ഇങ്ങനെ നേർവൃത്തസ്തൂപിക ഛേദിച്ചാൽ കിട്ടുന്ന വക്രങ്ങളെ പൊതുവെ '''വൃത്തസ്തൂപികാവക്രങ്ങൾ''' (Conics) എന്നു പറയുന്നു.
 
[[ഭൗതികശാസ്ത്രം|ഭൗതികശാസ്ത്രത്തിലും]] [[ജ്യോതിശാസ്ത്രം|ജ്യോതിശാസ്ത്രത്തിലും]] [[Engineering|സാങ്കേതികവിദ്യാരംഗങ്ങളിലും]], മറ്റനവധി ശാസ്ത്രമേഖലകളിലും പരവലയങ്ങൾക്കു് വളരെ പ്രാധാന്യമുണ്ട്.
 
ഒരു ഗോളത്തിന്റെ ഗുരുത്വാകർഷണത്തിനു വിധേയമായി, ക്ഷേപിക്കപ്പെടുന്ന ഒരു വസ്തുവിന്റെ (എറിയപ്പെടുന്ന ഒരു [[ക്രിക്കറ്റ്|ക്രിക്കറ്റു]]പന്ത്, തോക്കിൽ നിന്നു പായുന്ന ഒരു വെടിയുണ്ട മുതലായവ) സഞ്ചാരപഥം പരവലയാകൃതിയിലുള്ളവയാണ്.
 
== വിശ്ലേഷണജ്യാമിതീസമവാക്യങ്ങൾ ==
"https://ml.wikipedia.org/wiki/പ്രത്യേകം:മൊബൈൽവ്യത്യാസം/1742371" എന്ന താളിൽനിന്ന് ശേഖരിച്ചത്