"താപഗതികം" എന്ന താളിന്റെ പതിപ്പുകൾ തമ്മിലുള്ള വ്യത്യാസം

No edit summary
No edit summary
വരി 2:
[[പ്രമാണം:Triple expansion engine animation.gif|thumb|350px|right|ഇടതു ഭാഗത്തുള്ള ഒരു താപസ്രോതസ്സിൽ (ബോയ്ലർ) നിന്ന് ഊർജം എടുത്ത് വലതു ഭാഗത്തുള്ള താപ സ്വീകരണിയിലേക്ക് (കണ്ടെൻസർ) ഊർജം എത്തിക്കുന്ന ഒരു മാതൃകാ '''[[താപഗതികവ്യവസ്ഥ]]'''. ഇവിടെ [[പ്രവൃത്തി (താപഗതികം)|പ്രവൃത്തി]] പിസ്റ്റണുകളുടെ പരമ്പര ഉപയോഗിച്ചാണ് പുറത്തേക്കേത്തിക്കുന്നത്.]]
 
[[താപോർജം|താപോർജത്തെ]] മറ്റ് വിവിധ ഊർജ രൂപങ്ങളിലേക്കൂം ([[യാന്ത്രികോർജം|യാന്ത്രികംയാന്ത്രിക]], [[രാസോർജം|രാസ]], ഇലക്ട്രിക്കൽ[[വൈദ്യുതോർജം|വൈദ്യുത]] ഊർജരൂപങ്ങളിലേക്ക് തുടങ്ങിയ);, മറ്റ് വിവിധ ഊർജങ്ങളെ താപോർജമായുംതാപോർജമായി മാറ്റം വരുത്തുന്നതിനേയും അതുമായി ബന്ധപ്പെട്ട വിഷയങ്ങളെയും പറ്റി പഠിക്കുന്നതിന്‌ [[ഭൗതികശാസ്ത്രം|ഭൗതികശാസ്ത്രത്തിൽ]] '''താപഗതികം''' ('''ആംഗലേയം: Thermodynamics''') എന്ന് പറയുന്നു. [[ഊഷ്മാവ്]], [[മർദ്ദം]], [[വ്യാപ്തം]] തുടങ്ങിയവയുമായുള്ള ബഹുതലവീക്ഷണത്തിലുള്ള ബന്ധവും ഇതിൽ പഠന വിധേയമാകുന്നു. ഇവിടെ [[താപം]] എന്നതുകൊണ്ട് "കൈമാറ്റത്തിലുള്ള ഊർജ്ജത്തെയും", ഗതികം (dynamic) എന്നതുകൊണ്ട് "ചലനാത്മകം" എന്നും അർത്ഥമാക്കുമ്പോൾ ഊർജ്ജത്തിന്റെ കൈമാറ്റത്തെയും അത് കൈമാറ്റം ചെയ്യപ്പെടുന്ന ഘട്ടങ്ങളുടെയും പഠനം താപഗതികത്തിൽ ഉൾപ്പെടുന്നു. ചരിത്രപരമായി താപഗതിക ശാഖയുടെ വികസനത്തിനു വഴിതെളിച്ചത് ആദ്യകാല [[നീരാവി യന്ത്രം|നീരാവിയന്ത്രങ്ങളുടെ]] ദക്ഷത വർദ്ധിപ്പിക്കുന്നതിനു വേണ്ടിയുള്ള അന്വേഷണങ്ങളിൽ നിന്നാണ്‌.
 
ഈ ശാഖയുടെ പഠനത്തിന്റെ ആരംഭം [[താപഗതിക തത്ത്വങ്ങൾ|താപഗതിക തത്ത്വങ്ങളിലൂടെയാണ്‌]] (laws of thermodynamics). ഈ തത്ത്വങ്ങൾ പ്രകാരം ഊർജ്ജം താപത്തിന്റെയും പ്രവൃത്തിയുടെയും രൂപത്തിൽ ഭൗതിക വ്യുഹങ്ങൾക്കിടയിൽ കൈമാറ്റം ചെയ്യപ്പെടാൻ സാധിക്കും. ഇവ [[എൻട്രോപ്പി]] എന്ന ഒരു ഊർജ്ജത്തിന്റെ അവസ്ഥയെയും പ്രതിപാദിക്കുന്നുണ്ട്<ref>http://panspermia.org/seconlaw.htm</ref><ref>http://hyperphysics.phy-astr.gsu.edu/hbase/thermo/seclaw.html</ref><ref>http://www.emc.maricopa.edu/faculty/farabee/BIOBK/BioBookEner1.html</ref>.
വരി 10:
എല്ലാ ഭൗതിക പ്രവർത്തനങ്ങളേയുംപോലെതന്നെ താപചലനവും ചില അടിസ്ഥാന നിയമങ്ങൾക്കു വിധേയമായിട്ടാണു നടക്കുന്നത്. ഈ താപഗതിക നിയമങ്ങൾ 19-ആം ശതകത്തിലാണ് ആവിഷ്കരിക്കപ്പെട്ടത്. എല്ലാ താപഗതിക പ്രക്രിയകളേയും അവയുടെ പരിമിതികളേയും വിശദീകരിക്കുന്നവയാണ് ഈ നിയമങ്ങൾ.
 
=== താപഗതികത്തിലെപൂജ്യാം പൂജ്യംതാപഗതിക നിയമം ===
താപനില (temperature) എന്നതിന്റെ നിർവചനം നല്കുന്ന നിയമമാണിത്. താപഗതിക നിയമങ്ങളിൽ ഏറ്റവും അടിസ്ഥാനപരമായിട്ടുള്ളതും ഈ നിയമമാണ്. ഒന്നും രണ്ടും നിയമങ്ങൾ കണ്ടുപിടിച്ചതിനുശേഷം മാത്രമാണ് ഈ നിയമം കണ്ടുപിടിക്കപ്പെട്ടത്. എന്നാൽ പ്രാധാന്യമനുസരിച്ച് ഇത് ഒന്നും രണ്ടും നിയമങ്ങൾക്കു മുമ്പേ പ്രതിപാദിക്കേണ്ടിവരുന്നു. അതിനാലാണ് പൂജ്യം നിയമം (zeroth law) എന്ന പേരു വന്നത്. റാൽഫ് എച്ച്. ഫൗളർ എന്ന ബ്രിട്ടിഷ് ഗണിതശാസ്ത്രജ്ഞൻ 1931-ലാണ് ഈ നിയമം ആവിഷ്കരിച്ചത്.
 
വരി 77:
താപ എൻജിനുകളുടെ പ്രക്രിയ ചക്രീയം (cyclic) ആകുന്നതിനാലാണ് തുടർച്ചയായി പ്രവൃത്തി ലഭ്യമാകുന്നത്. ഒരു ആദർശ (ideal) താപ എൻജിന്റെ ദക്ഷത (efficiency)η= W/JQ = 1 ആയിരിക്കും. എന്നാൽ യാഥാർഥത്തിൽ ദക്ഷത 1-ലും കുറവായിരിക്കും. സാധാരണ താപ എൻജിനുകളുടെ ദക്ഷത 5% മുതൽ 55% വരെ മാത്രമായാണു കണ്ടുവരുന്നത്. സാദി കാർനോ(Sadi Carnot)യുടെ പഠനങ്ങൾ ഈ രംഗത്ത് ശ്രദ്ധേയമാണ്.
 
=== താപഗതികത്തിന്റെ മൂന്നാം താപഗതിക നിയമം ===
"താപനില പൂജ്യത്തോട് അടുക്കുമ്പോൾ ഏതൊരു സമതാപീയ, ഉത്ക്രമണ പ്രക്രിയയോടു ബന്ധപ്പെട്ടുള്ള എൻട്രോപ്പി വ്യത്യാസവും പൂജ്യത്തോട് അടുക്കുന്നു. എന്നതാണ് താപഗതികത്തിന്റെ മൂന്നാം നിയമം. പൂജ്യം കെൽവിൽ താപനില എന്നാൽ മർദവും പൂജ്യമാകണം. ഒരു മാർഗത്തിലൂടെയും കേവലപൂജ്യം (absolute zero)എന്ന താപനില കൈവരിക്കാൻ കഴിയില്ല എന്നു മൂന്നാം നിയമം അനുശാസിക്കുന്നു. കേവലപൂജ്യം എന്നത് അനന്ത സ്പർശിയായി മാത്രം എത്തിച്ചേരാൻ കഴിയാവുന്ന ഒരു താപനിലയായി മാറുന്നു. അതിനാൽ മൂന്നാം നിയമത്തെ മറ്റൊരു രീതിയിലും നിർവചിക്കാറുണ്ട്: 'പരിമിതമായ സംക്രിയകൾ കൊണ്ട് ഒരു വ്യൂഹത്തെ കേവലപൂജ്യ താപനിലയിലെത്തിക്കാൻ ഏതു പ്രവർത്തനക്രമം മൂലവും എന്തുമാത്രം ആദർശപരമാക്കിയതായാലും അസാധ്യമാണ്'. 'കേവലപൂജ്യത്തിന്റെ അപ്രാപ്യതാതത്ത്വം' എന്നും ഈ നിയമത്തെ വിശേഷിപ്പിക്കാറുണ്ട്. താഴ്ന്ന താപനിലാപഠനങ്ങളിലും താപപ്രക്രിയകളുടെ ദിശാനിർണയനത്തിലും താപഗതികത്തിന്റെ മൂന്നാം നിയമം പ്രയോജനപ്പെടുത്തുന്നു.
 
"https://ml.wikipedia.org/wiki/താപഗതികം" എന്ന താളിൽനിന്ന് ശേഖരിച്ചത്